242.有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = "anagram", t = "nagaram" 输出: true
示例 2: 输入: s = "rat", t = "car" 输出: false
说明: 你可以假设字符串只包含小写字母。
先回想一下,什么情况下要使用哈希表?当我们需要快速判断一个元素是否出现在集合里的时候,就要考虑哈希法
结合本题,我们只需要判断在s字符串中出现的字母同样出现在了t字符串中,且出现次数相同,所以我们需要设置一个哈希表来记录s字符串中字母出现的次数。这里不涉及到索引位置,所以不需要使用map,使用数组即可。
题目中说明字符串只包含小写字母,所以数组下标最大为26。同时我们需要将字符映射到数组,也就是哈希表的索引下标上。因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。
因此遍历字符串的时候,只需要将s[i]-'a'就能得到该字母对应数组的下标,出现一次便+1
然后遍历字符串t,出现一次便减一,最后遍历整个数组,只要数组中出现不为0的位置,说明两个字符串不是字母异位词
具体代码:
class Solution {
public:
bool isAnagram(string s, string t) {
int record[26] = {0};
for (int i = 0; i < s.size(); i++){
record[s[i] - 'a']++;
}
for (int i = 0; i < t.size(); i++){
record[t[i] - 'a']--;
}
for (int i = 0; i < 26; i++){
if(record[i] != 0){
return false;
}
}
return true;
}
};
349. 两个数组的交集
题意:给定两个数组,编写一个函数来计算它们的交集。
说明: 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。
最开始这个题我是想和上一题一样来做的,但这道题涉及到一个去重的问题,也就是说并不在乎该元素在数组中出现了多少次,只要在两个数组出现就说明存在交集。
如果直接使用数组来做哈希的题目,就必须限制数值的大小,在没有限制数值大小的情况下,无法使用数组来做哈希,所以这里使用unordered_set(底层实现是哈希表)
首先设置一个unordered_set<int> result_set用来存放结果,用set的原因是为了给结果去重;在设置一个num_set存放nums1;之后遍历nums2,观察num_set中是否在nums的元素,这里使用到find()函数
find()是C++标准库中的一个通用查找算法,用于在给定范围内查找指定元素。它接受两个迭代器作为参数,分别表示搜索范围的起始和结束位置。如果找到指定元素,则返回指向该元素的迭代器;否则,返回指向搜索范围末尾的迭代器。
即nums_set.find(num) != nums_set.end()时,说明找到了指定元素,可以插入到result_set中
最后将result_set转换为vector进行输出
具体代码:
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
unordered_set<int> nums_set(nums1.begin(), nums1.end());
for (int num : nums2) {
// 发现nums2的元素 在nums_set里又出现过
if (nums_set.find(num) != nums_set.end()) {
result_set.insert(num);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
202. 快乐数
建议:这道题目也是set的应用,其实和上一题差不多,就是 套在快乐数一个壳子
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
本题要拆解为两个函数,一个函数用来求该数每个位置上的数字的平方和,另一个函数用来判断该数是否会变为1,是否陷入循环
首先,求各个位置的平方和,将该数先取余,就可以得到末位的数字,然后除以10,继续取余,直到该数小于1
其次,如何判断是否会陷入循环,就要看之前出现的平方和是否再次出现,所以再次涉及到判断集合内的元素出现次数的问题,因此这里要用到哈希法。通过find函数查找当前数字是否在set中出现过
class Solution {
public:
int getSum(int n){
int sum = 0;
while(n){
sum += (n%10) * (n%10);
n = n/10;
}
return sum;
}
bool isHappy(int n) {
unordered_set<int> set;
while(1){
int num = getSum(n);
if(num == 1) return true;
if (set.find(num) != set.end()){
return false;
}else{
set.insert(num);
}
n = num;
}
}
};
思路上和上面那道题差不多,多了一个求平方和的函数,以及加入了判断语句
1. 两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
第一种暴力解法,通过两层循环找到和为目标值的那两个数
第二种,转换思路,如果nums[i] + nums[j]=target,则nums[j]=target-nums[i],这时只需要判断nums[j]是否存在于nums数组中
由于本题中需要返回数组下标,所以哈希表中不仅要存入元素值,还要存入元素下标,这里设定value为元素值,key为数组下标,依旧使用find函数来寻找该元素是否在数组中出现
具体代码:
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> map;
for (int i = 0; i < nums.size(); i++){
auto iter = map.find(target - nums[i]);
if(iter != map.end()){
return {iter->second, i};
}
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};