快速傅里叶变换和逆变换的C++实现

本文介绍了如何利用C++实现快速傅里叶变换(FFT)和其逆变换(IFFT),以解决大整数乘法的运行效率问题。通过阅读一周的资料并理解算法,作者提供了包含FFT、IFFT和RaderSort函数的代码,以助于将大整数乘法的复杂度降低到LogN * N。

近来做一个大整数乘法的ACM题目时候一直被运行超时所困扰,上网搜索下后发现需要用到快速傅里叶变换和逆变换的算法来实现大整数乘法,才能把复杂度降到LogN * N.

看了一个星期的资料, 吃透了算法才把完整的代码敲出来^^。


代码里有三个主要的函数, 具体约束和说明见代码注释

FFT                              //计算区间内(左闭右开)的复数的离散傅里叶变换(按时间变换DIT-FFT)

IFFT                             //计算区间内(左闭右开)的复数的离散傅里叶逆变换(按时间变换DIT-IFFT)

RaderSort                    //对目标区间(左闭右开)元素进行倒位序排序,雷德算法


使用方法示例 1:

vector<complex<double>> I;
I.push_back(complex<double>(8, 0));
I.push_back(complex<double>(7, 0));
I.push_back(complex<double>(6, 0));
I.push_back(complex<double>(0, 0));
I.push_back(complex<double>(0, 0));
I.push_back(complex<double>(0, 0));
I.push_back(complex<double>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值