位运算 之(1) 按位与(AND)& 操作

由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。

 

按位与( Bitwise AND ),运算符号为 &

a&b 的操作的结果: a b 中对应位同时为 1 ,则对应结果位也为 1

例如:

100100011010001010110 01111000

&             1111111 00000000  

---------------------------------------------

                                     101011 00000000

10101100000000 进行右移 8 位得到的是 101011 ,这就得到了 a 8~15 位的掩码 了。 那么根据这个启示,判断一个整数是否是处于 0-65535 之间(常用的越界判断):

用一般的 (a >= 0) && (a <= 65535) 可能要两次判断。

改用位运算只要一次:

a & ~((1 << 16)-1)

后面的常数是编译时就算好了的。其实只要算一次逻辑与就行了。

 

             

常用技巧:

 

1、  用于整数的奇偶性判断

 

一个整数 a, a & 1 这个表达式可以用来判断 a 的奇偶性。二进制的末位为 0 表示偶数,最末位为 1 表示奇数。使用 a%2 来判断奇偶性和 a & 1 是一样的作用,但是 a & 1 要快好多。

 

2、  判断 n 是否是 2 的正整数冪

 

(!(n&(n-1)) ) && n

 

举个例子:                                                

如果 n = 16 = 10000 n-1 = 1111

那么:

10000

& 1111

----------

                            0

再举一个例子:如果 n = 256 = 100000000 n-1 = 11111111

那么:

100000000

&11111111

--------------

        0

好!看完上面的两个小例子,相信大家都有一个感性的认识。从理论上讲,如果一个数 a 他是 2 的正整数幂,那么 a 的二进制形式必定为 1000….. (后面有 0 个或者多个 0 ),那么结论就很显然了。

 

3、  统计 n 1 的个数

 

朴素的统计办法是:先判断 n 的奇偶性,为奇数时计数器增加 1 ,然后将 n 右移一位,重复上面步骤,直到移位完毕。

朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。

 

举例说明,考虑 2 位整数 n=11 ,里边有 2 1 ,先提取里边的偶数位 10 ,奇数位 01 ,把偶数位右移 1 位,然后与奇数位相加,因为每对奇偶位相加的和不会超过 两位 ,所以结果中每两位保存着数 n 1 的个数;相应的如果 n 是四位整数 n=0111 ,先以 一位 为单位做奇偶位提取,然后偶数位移位(右移 1 位),相加;再以 两位 为单位做奇偶提取,偶数位移位(这时就需要移 2 位),相加,因为此时没对奇偶位的和不会超过 四位 ,所以结果中保存着 n 1 的个数,依次类推可以得出更多位 n 的算法。整个思想类似分治法。
在这里就顺便说一下常用的二进制数:

0xAAAAAAAA =1010 1010 1010 1010 1010 1010 1010 1010

0x55555555 = 1010101 01010101 01010101 0101 0101 (奇数位为 1 1 位为单位提取奇偶位

 

0xCCCCCCCC = 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00

0x33333333 =     11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 (以 “2 为单位提取奇偶位)

 

0xF0F0F0F0 = 1111 0000 1111 0000 1111 0000 1111 0000

0x0F0F0F0F =       1111 0000 1111 0000 1111 0000 1111 “8 为单位提取奇偶位

 

0xFFFF0000 = 1111111111111111 0000000000000000               

0x0000FFFF =                  1111111111111111 “16 为单位提取奇偶位

 

例如: 32 位无符号数的 1 的个数可以这样数:

 

int  count_one(unsigned  long  n)
{
    
// 0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
    n  =  ((n  &   0xAAAAAAAA >>   1 +  (n  &   0x55555555 );

    
// 0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
    n  =  ((n  &   0xCCCCCCCC >>   2 +  (n  &   0x33333333 );

    
// 0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
    n  =  ((n  &   0xF0F0F0F0 >>   4 +  (n  &   0x0F0F0F0F );

    
// 0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
    n  =  ((n  &   0xFF00FF00 >>   8 +  (n  &   0x00FF00FF );

    
// 0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
    n  =  ((n  &   0xFFFF0000 >>   16 +  (n  &   0x0000FFFF );

    
return  n;
}

 

 

举个例子吧,比如说我的生日是农历 2 11 ,就用 211 吧,转成二进制:

                     n = 11010011

计算 n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);

得到               n = 10010010

计算 n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);

得到               n = 00110010

计算 n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);

得到               n = 00000101 ----------------- à 无法再分了,那么5就是答案了。

 

 

4 、对于 正整数 的模运算 注意,负数不能这么算

 

先说下比较简单的:

乘除法是很消耗时间的,只要对数左移一位就是乘以 2 ,右移一位就是除以 2,传说用位运算效率提高了60%

2^k 众所周知: n<<k 。所以你以后还会傻傻地去敲 2566*4 的结果 10264 吗?直接 2566<<4 就搞定了,又快又准确。

 

2^k 众所周知: n>>k

 

那么 mod 2^k 呢?( 2 的倍数取模

n&((1<<k)-1)

用通俗的言语来描述就是 , 2 的倍数取模,只要将数与 2 的倍数 -1 做按位与运算即可。

好!方便理解就举个例子吧。

思考:如果结果是要求模 2^k 时,我们真的需要每次都取模吗?

 

在此很容易让人想到快速幂取模法。

快速幂取模算法

经常做题目的时候会遇到要计算  a^b mod c 的情况,这时候,一个不小心就 TLE 了。那么如何解决这个问题呢?位运算来帮你吧。

 

首先介绍一下秦九韶算法: ( 数值分析讲得很清楚 )

把一个 n 次多项式 f(x) = a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0] 改写成如下形式:

   f(x) = a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]

   = (a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]

   = ((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]

   =. .....

   = (......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].

  求多项式的值时,首先计算最内层括号内一次多项式的值,即

   v[1]=a[n]x+a[n-1]

  然后由内向外逐层计算一次多项式的值,即

   v[2]=v[1]x+a[n-2]

   v[3]=v[2]x+a[n-3]

   ......

   v[n]=v[n-1]x+a[0]

这样,求 n 次多项式 f(x) 的值就转化为求 n 个一次多项式的值。

 

好!有了前面的基础知识,我们开始解决问题吧

(a × b) mod c=( (a mod c) × b) mod c.

我们可以将  b 先表示成就:

  b = a[t] × 2^t + a[t-1] × 2^(t-1) + …… + a[0] × 2^0.   (a[i]=[0,1]).

这样我们由  a^b   mod   c = (a^(a[t] × 2^t   +   a[t-1] × 2^ t-1 + …a[0] × 2^0) mod c.

然而我们求   a^( 2^(i+1) ) mod c=( (a^(2^i)) mod c)^2 mod c . 求得。

具体实现如下:

使用秦九韶算法思想进行快速幂模算法,简洁漂亮

//  快速计算 (a ^ p) % m 的值
__int64 FastM(__int64 a, __int64 p, __int64 m)

    
if  (p  ==   0 return   1 ;
    __int64  r 
=  a  %  m;
    __int64  k 
=   1 ;
    
while  (p  >   1 )
    {
        
if  ((p  &   1 ) != 0 )
        {
            k 
=  (k  *  r)  %  m; 
}
              r 
=  (r  *  r)  %  m;
            p 
>>=   1 ;
        }
        
return  (r  *  k)  %  m;
}

 

 http://acm.pku.edu.cn/JudgeOnline/problem?id=3070

 

5 、计算掩码

比如一个截取低 6 位的掩码: 0×3F
用位运算这么表示: (1 << 6) - 1
这样也非常好读取掩码,因为掩码的位数直接体现在表达式里。

 

按位或运算很简单,只要a和b中相应位出现1,那么a|b的结果相应位也为1。就不多说了。 

 

6、子集

  枚举出一个集合的子集。设原集合为mask,则下面的代码就可以列出它的所有子集: 



   for (i = mask ; i ; i = (i - 1) & mask) ;  

   很漂很漂亮吧。

转载:http://www.cnblogs.com/ktyanny/archive/2009/12/25/1632297.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值