题目描述
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
思路
使用翻转操作代替旋转操作的方式来解决问题:
可以发现经过这样的翻转可以实现题目要求
- 对于水平轴翻转而言,其公式如下:
matrix[row][col]=========>matrix[n-row-1][col]
- 对于主对角线翻转而言,其公式如下:
matrix[row][col] ==========> matrix[col][row]
- 关联得到:
matrix[row][col]=========>matrix[n-row-1][col] ==========> matrix[n-row-1][row]
即matrix[row][col]==========> matrix[n-row-1][row]
代码
class Solution {
public void rotate(int[][] matrix) {
//获取矩阵的边长数
int n = matrix.length;
//进行水平翻转
for(int i=0;i<n/2;i++){//对所有行的一半进行操作
//对列进行操作
for(int j=0;j<n;j++){
//对数组对应元素进行交换,temp为中间变量
int temp = matrix[i][j];
//当前行列位置的数是倒数行列对应的数(即水平翻转)
matrix[i][j] = matrix[n-i-1][j];
matrix[n-i-1][j] = temp;
}
}
// 主对角线翻转
for(int i=0;i<n;i++){//对每一行都进行操作
for(int j=0;j<i;j++){//对当前行的内容进行对角线翻转
int temp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;
}
}
}
}
代码说明
注释见。。。