48. 旋转图像:给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩

题目描述

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:
在这里插入图片描述
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:
在这里插入图片描述
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

思路

使用翻转操作代替旋转操作的方式来解决问题:
在这里插入图片描述
可以发现经过这样的翻转可以实现题目要求

  1. 对于水平轴翻转而言,其公式如下:
    matrix[row][col]=========>matrix[n-row-1][col]
  2. 对于主对角线翻转而言,其公式如下:
    matrix[row][col] ==========> matrix[col][row]
  3. 关联得到:
    matrix[row][col]=========>matrix[n-row-1][col] ==========> matrix[n-row-1][row]matrix[row][col]==========> matrix[n-row-1][row]

代码

class Solution {
    public void rotate(int[][] matrix) {
        //获取矩阵的边长数
        int n = matrix.length;
        //进行水平翻转
        for(int i=0;i<n/2;i++){//对所有行的一半进行操作
            //对列进行操作
            for(int j=0;j<n;j++){
                //对数组对应元素进行交换,temp为中间变量
                int temp = matrix[i][j];
                //当前行列位置的数是倒数行列对应的数(即水平翻转)
                matrix[i][j] = matrix[n-i-1][j];
                matrix[n-i-1][j] = temp;
            }
        }
        // 主对角线翻转
        for(int i=0;i<n;i++){//对每一行都进行操作
            for(int j=0;j<i;j++){//对当前行的内容进行对角线翻转
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
    }
}

代码说明

注释见。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

?abc!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值