题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
思路
使用组合数学的思路进行解决:
- 从左上角到右下角的过程中,一共需要移动 m+n-2 次
- m-1次向下移动
- n-1次向右移动
- 路径的总数,等于从 m+n-2 次移动中选择 m-1 次向下移动的方案
代码
class Solution {
public int uniquePaths(int m, int n) {
long ans = 1;
//进行组合数运算
for(int x=n, y=1; y<m; x++, y++){
ans = ans * x / y;
}
return (int)ans;
}
}
代码说明
注释见。。。