自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 Michael Nielsen 著Neural Networks and Deep Learning关于第一章使用神经网络识别手写数字的74行Python代码之“梯度下降算法”

Michael Nielsen 著Neural Networks and Deep Learning关于第一章使用神经网络识别手写数字的74行Python代码之“梯度下降算法”作者编著的“识别手写数字”的神经网络是基于MNIST数据集进行的,而这些数据集的图片都是28∗2828*2828∗28大小的灰度图像,所以我们会把每一个训练输入记为xxx,并记作一个28∗28=78428*28=78428∗28=784维的向量输入给网络,而每个向量中的数值代表图像中每个像数的灰度值。同时我们使用y=y(x)y=y(

2020-11-25 23:08:12 250

原创 Neural Networks and Deep Learning 的MNIST数据可视化

Neural Networks and Deep Learning中我有跟着作者一直阅读这本书,但是后来看到了第三章 可以觉得内容有点冗长,总结了一下,我自己过去一周阅读第三章花费了不少时间,但是收获不是很多(因为第三章的内容在第一第二章已经提过),后来甚至老师在提出希望我每十天总结一篇学习汇报的时候 我无从下手 于是我就去和别人讨论自己的问题, 总结自己的问题首先,第一第二章对于初学者来书真是圣书,一下子带你写一个可以识别数字的神经网络,注意这里只是神经网络,而非实现其背后的目的-识别数字,而背后要自己

2020-05-12 00:43:19 287

原创 Michael Nielsen 著Neural Networks and Deep Learning关于第二章使用神经网络识别手写数字的74行中反向传播算法相关数学公式代码实现过程

首先这里是在知道代价函数怎么得出 了解什么是前馈神经网络以及其过程的前提下讨论反向传播(也即已经知道什么是权重 什么是偏置值 以及激活函数的作用 怎么求得代价函数)为什么要用反向传播这里和书中一样采用三层网络结构的神经网络 第一层是输入层(这里可以看作是输入每个带数字的图片并且由其像素点而对应组成的向量)接着一层隐含层(中间既不是输出层也不是输入层的都是叫隐含层) 最后是输出层(输出也是向量形...

2020-04-23 22:40:17 388

原创 Michael Nielsen 著Neural Networks and Deep Learning关于第一章使用神经网络识别手写数字的74行Python代码从版本2到版本3的修改

Michael Nielsen 著Neural Networks and Deep Learning关于第一章使用神经网络识别手写数字的74行Python代码从版本2到版本3的修改 开场白新的发现小白来解决问题啦开场白作为深度学习和机器学习的新手入门 首选当然是吴恩达机器学习的入门(超级推荐 小白完全可听懂) 了解了基本概念之后 实操还是要另外找资料的 不然白学了 看了周志华老师的机器学习 李...

2020-04-21 14:37:48 658 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除