吴恩达 Machine Learning week4--quiz4--Neural Networks: Representation课后习题

这篇博客探讨了吴恩达机器学习课程中关于神经网络的表示问题。内容涉及多类分类问题中三层神经网络的激活值性质、两层网络表示XOR函数的能力、任意二进制输入逻辑函数的神经网络表示可能性,以及隐藏层激活值的范围。同时,还解释了sigmoid激活函数在计算中的应用,并给出了相关逻辑门函数(如AND、NAND、OR、XOR)的神经网络计算示例。最后,讨论了如何在Octave中进行向量化实现神经网络隐藏层激活值的计算。
摘要由CSDN通过智能技术生成

这里写图片描述
Which of the following statements are true? Check all that apply.

  • Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a^{(3)}1 = (h\Theta(x))1a1(3)=(hΘ(x))1 be the activation of the first output unit, and similarly a^{(3)}_2 = (h\Theta(x))2a2(3)=(hΘ(x))2 and a^{(3)}_3 = (h\Theta(x))_3a3(3)=(hΘ(x))3. Then for any input xx, it must be the case that a^{(3)}_1 + a^{(3)}_2 + a^{(3)}_3 = 1a1(3)+a2(3)+a3(3)=1.
  • two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.
  • Any logical function over binary-valued (0 or 1) inputs x_1x1 and x_2x2 can be (approximately) represented using some neural network.
  • The activation values of the hidden uni
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值