Which of the following statements are true? Check all that apply.
- Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a^{(3)}1 = (h\Theta(x))1a1(3)=(hΘ(x))1 be the activation of the first output unit, and similarly a^{(3)}_2 = (h\Theta(x))2a2(3)=(hΘ(x))2 and a^{(3)}_3 = (h\Theta(x))_3a3(3)=(hΘ(x))3. Then for any input xx, it must be the case that a^{(3)}_1 + a^{(3)}_2 + a^{(3)}_3 = 1a1(3)+a2(3)+a3(3)=1.
- two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.
- Any logical function over binary-valued (0 or 1) inputs x_1x1 and x_2x2 can be (approximately) represented using some neural network.
- The activation values of the hidden uni