程序化广告行业(43/89):广告优化、项目总结与岗位职责深度剖析
大家好!在之前的分享中,我们了解了程序化广告的投放问题、数据预警机制等内容。今天咱们接着深入探讨程序化广告行业,重点解析广告优化调整的具体方法、项目总结和结案报告的要点,以及相关执行部门和岗位职责,希望能和大家一起学习进步,对这个行业有更全面的认识。
一、广告优化调整:提升投放效果的关键
广告优化是提升程序化广告投放效果的核心环节,主要围绕曝光、点击和转化这三个关键触点展开。
- 曝光优化
- 媒体组合优化:媒体就像是广告的展示舞台,不同的舞台有不同的特点。我们要根据媒体人群匹配度、重合度和饱和度来选择最佳组合。比如,一家母婴产品公司投放广告,那像母婴类垂直媒体,它的人群匹配度就高;如果同时选了好几个母婴类媒体,就要看看它们之间目标人群的重合度高不高,要是重合度太高,就没必要都投。另外,还要关注媒体饱和度,要是某个媒体上大部分母婴用户都已经看到过广告了,再继续投效果可能就不好了,得找新的媒体渠道。
- 创意优化:广告创意得贴合广告诉求,就像演员要符合角色设定一样。如果广告宣传的是一款智能手表,创意却一直在强调外观,忽略了智能功能,那用户可能就不会感兴趣。所以要不断优化创意,让它更好地传达产品的核心卖点。
- 频次调整:广告不能过度曝光,也不能曝光太少。要根据不同曝光频次的人群数据找到一个平衡点。比如一款新游戏上线,前期可以适当增加曝光频次,让更多玩家知道;但如果一直频繁展示,玩家可能会厌烦,所以要适时调整。
- 可见曝光优化:广告得让用户看得见才有效果。我们要分析不同广告位、地区、时间和浏览器等维度的可视度数据。假如某个广告位在特定地区的可视度很低,可能是当地网络问题或者受众特征导致的,那就可以考虑过滤掉这个广告位,或者调整广告位与活动的设置,找到最佳组合。
- 点击优化
- 点击率优化:点击率能反映广告的吸引力。我们要细分不同定向维度的点击率情况,找出异常点并分析原因。比如按照年龄、性别、地域等定向投放广告,发现某个年龄段的点击率特别低,就要看看是不是针对这个年龄段的广告内容或者投放策略有问题,然后进行优化。
- 点击到达率优化:点击到达率受网络情况和落地页加载速度影响。正常情况下,点击到达率平均要在70%以上。如果网络不好,用户点击广告后可能无法正常跳转;要是落地页加载时间太长,用户可能就没耐心等待,直接关闭页面了。所以要优化网络环境,提高落地页加载速度。
- 转化优化
- 页面内容优化:落地页的内容编排很重要,要和广告创意相匹配。用户被广告吸引点击进来,结果发现页面内容混乱,找不到自己想要的信息,那很容易就流失了。比如电商广告,用户点击进来后应该能快速找到商品介绍、购买按钮等。
- 转化体验优化:注册和购买流程不能太繁琐。如果注册步骤一大堆,或者购买过程不顺畅,用户就可能放弃。所以要简化注册步骤,优化转化流程,提升用户体验。
二、项目总结与结案报告:复盘经验与评估效果的重要工具
- 项目总结的价值
- 执行方角度:执行方通过对投放数据的深度分析,可以更好地了解不同媒体的特点和效果,建立媒体策略库。这就好比积累了一本武功秘籍,在设计新的广告投放策略时可以参考,也能在拓展媒体资源和价格谈判时作为依据。比如知道了某个优质媒体的受众特征和投放效果,就可以寻找类似的媒体合作,并且明确合理的价格。
- 需求方角度:需求方通过结案报告,可以清楚了解投放的支出和具体情况,评估投放策略是否有效,以此作为结算依据,还能判断执行方的能力,决定是否继续合作。这就像买家收到商品后要检查质量,看看是否符合预期。
- 结案报告的要素
- 简报回顾:要呼应广告主的投放需求,回顾项目背景、投放目标和KPI考核标准。这就像是考试前要明确考试范围和得分要求一样,让大家清楚一开始的目标是什么。
- 活动执行效果分析:根据要求汇报KPI的达成情况,客观分析投放策略和效果,说明是如何完成KPI的。这就好比考试结束后要分析自己的答题情况,看看哪些地方做得好,哪些地方还需要改进。
- 执行和优化建议:总结项目执行中的不足,提出改进方案和建设性意见。这就像是给项目“看病开药方”,让后续项目能做得更好。
- 总结概括:简洁概括投放效果,对比实际效果和KPI要求,提炼受众特征,强调投放亮点。这就像是写一篇作文的总结段,突出重点,给人留下深刻印象。
- 报告撰写的规范
- 内容易读:报告要有合理的框架,逻辑清晰,文字表达清楚。就像写一篇文章,要有开头、中间和结尾,段落之间过渡自然,让人一看就懂。
- 形式美观:做到图文并茂,整体风格和色调统一和谐。就像装修房子,不仅要实用,还要美观,让人看着舒服。
三、执行部门与岗位职责:协同合作推动项目进展
DSP项目执行过程中,主要有客户服务、广告运营、媒介、产品技术、算法这五个岗位,它们相互协作,共同推动项目进行。
- 客户服务:客户服务就像是一座桥梁,连接着广告主和DSP内部团队。
- 客户执行(AE):对外负责和客户沟通,包括提案、报告、收款等;对内带领运营团队制定投放策略、监督投放过程。这就好比一个项目经理,要和客户对接需求,还要管理团队完成项目。
- 客户经理(AM):是AE的上级,主要负责维护客户关系,把控AE的工作质量。就像一个部门主管,要确保团队工作符合客户要求。
- 客户总监(AD):具备全局性思维和应急处理能力,带领团队更好地服务客户。这就像一个将军,要统领全局,应对各种突发情况。
- 广告运营:广告运营是具体执行广告投放的部门。
- 优化师:是广告投放的核心执行人,负责制定广告策略、设置投放活动、分析数据和优化调整,要对广告投放效果负责。就像一个赛车手,要掌控好比赛的节奏,根据赛道情况调整策略。
- 业务数据运营:分析媒体资源和人群标签数据,为优化师提供策略支持。就像赛车手的智囊团,提供各种数据和建议,帮助赛车手做出更好的决策。
- 设计师:部分DSP团队会有设计师,为广告主设计广告素材并优化。在效果广告中,设计师的作用很大;而品牌广告主一般有自己的创意规范,DSP方的设计师主要是配合。就像一个造型师,把广告打扮得更吸引人。
四、代码示例
下面用Python代码模拟一个简单的广告投放效果评估和优化建议生成的过程。假设我们有一个广告投放效果的数据字典,包含点击率、点击到达率、转化率等信息,根据这些数据给出相应的优化建议。
# 模拟广告投放效果数据
ad_effect_data = {
'click_rate': 0.04,
'click_through_rate': 0.6,
'conversion_rate': 0.02
}
# 设定点击率、点击到达率和转化率的标准值
standard_click_rate = 0.05
standard_click_through_rate = 0.7
standard_conversion_rate = 0.03
optimization_suggestions = []
# 点击率评估与建议
if ad_effect_data['click_rate'] < standard_click_rate:
optimization_suggestions.append("点击率低于标准值,建议优化广告创意,调整定向策略。")
# 点击到达率评估与建议
if ad_effect_data['click_through_rate'] < standard_click_through_rate:
optimization_suggestions.append("点击到达率较低,检查网络环境,优化落地页加载速度。")
# 转化率评估与建议
if ad_effect_data['conversion_rate'] < standard_conversion_rate:
optimization_suggestions.append("转化率未达标准,优化页面内容,简化转化流程。")
if optimization_suggestions:
print("根据广告投放效果,给出以下优化建议:")
for suggestion in optimization_suggestions:
print(suggestion)
else:
print("广告投放效果良好,可继续保持当前策略。")
这段代码只是一个简单的示例,实际的广告投放效果评估和优化建议生成会更复杂,需要处理更多的数据和情况。
写作这篇博客花费了我不少时间和精力,希望能对大家有所帮助。如果您觉得这篇文章有用,恳请点赞、评论支持一下,也欢迎大家关注我的博客,后续我还会分享更多程序化广告行业的知识,咱们一起在这个领域不断探索,共同成长!