程序化广告行业(67/89):DMP系统标签制作与人群拓展深度解析

程序化广告行业(67/89):DMP系统标签制作与人群拓展深度解析

大家好!在之前的分享中,我们对程序化广告的多个关键环节进行了探讨。今天,咱们继续深入了解程序化广告中的DMP系统,聚焦于标签制作和人群拓展这两个重要板块。我希望通过这次的分享,能和大家一起在程序化广告领域收获更多知识,共同进步。

一、DMP系统标签制作:打造精准人群画像的基石

DMP系统中的标签制作,简单来说,就是把收集到的各种数据进行加工整合,变成一个个有价值的人群标签,这些标签是实现精准广告投放的关键。

(一)组合数据构建人群标签

组合数据时,需要明确人群标签的名称、分组和描述信息。人群分组和标签之间的关系很灵活,一个分组能容纳多个标签,一个标签也可以属于不同分组。比如,在电商场景中,“电子产品购买人群”这个标签,既可以放在“热门品类消费人群”分组,也能归到“高价值客户人群”分组。

制作标签的核心在于设定人群条件。这需要对数据源进行“且”“或”条件的组合。以一个美妆品牌为例,它可能想找到最近30天在品牌官网浏览过口红产品页面,并且在小红书上关注了美妆话题,同时在抖音上观看过美妆视频的人群。通过这样的组合条件筛选,就能精准定位到目标消费群体,为后续的广告投放提供有力支持。

设置人群条件时,涉及数据来源、时间和规则三个关键字段。数据来源就是选择数据供应商,不同的供应商提供的数据类型和质量可能有所差异。时间设置分为绝对时间和相对时间,绝对时间适合针对特定活动或时间段的数据筛选,比如“2024年10月1日 - 2024年10月7日”;相对时间则更灵活,像“最近7天”,适用于跟踪近期用户行为。在设定规则前,要先确定用户ID类型,常见的有cookie、移动设备ID、手机号或邮箱等。之后,就可以根据各种维度的规则进行筛选了。

(二)各类规则详解

  1. 人群标签规则:可以对已有的标签进行二次筛选。比如,品牌已经有了“购买过产品的人群”标签,在此基础上,还能进一步筛选出“购买过产品且购买金额大于500元的人群”,这样能更精准地定位高价值客户。
  2. 人口属性规则:从性别、年龄等方面进行筛选。一家母婴品牌在推广孕妇产品时,就可以选择“女性”且“年龄在20 - 35岁”的人群,让广告精准触达目标客户。
  3. 设备属性规则:根据设备的操作系统、品牌和型号来筛选人群。假如一家游戏公司新推出了一款对配置要求较高的手游,就可以选择“苹果iOS系统且设备型号为iPhone 11及以上”或者“安卓系统且运行内存8GB及以上”的人群,保证广告展示给有能力流畅运行游戏的用户。
  4. 地理位置规则:按照国家、省份、城市等定位人群。本地的餐饮商家做推广时,就可以选择店铺所在城市的人群,提高广告的针对性和转化率。
  5. 兴趣爱好规则:依据用户的浏览和购买兴趣筛选。一家运动品牌可以选择“浏览过运动装备网站”且“购买过跑步鞋”的人群,精准投放新品跑步鞋的广告。
  6. 流量来源规则:整合广告投放活动的数据。比如,电商平台在统计不同广告渠道的引流效果时,可以选择从特定广告活动、广告位、渠道、媒体分类、媒体频道来的人群,分析各个渠道的引流能力,优化广告投放策略。
  7. 事件类型规则:针对广告曝光、点击、到站访问、停留时长、访问内容、转化行为等用户行为进行筛选。比如,在线教育平台可以选择“广告点击次数大于3次且在平台停留时长超过30分钟”的人群,这些用户对平台内容有较高的兴趣和参与度,是重点转化对象。

下面用Python代码模拟一个简单的人群标签筛选过程:

# 假设已有用户数据列表,每个用户数据是一个字典
users = [
    {"user_id": 1, "gender": "女", "age": 28, "purchase_amount": 800, "visited_pages": ["lipstick_page"]},
    {"user_id": 2, "gender": "男", "age": 32, "purchase_amount": 300, "visited_pages": ["mascara_page"]},
    {"user_id": 3, "gender": "女", "age": 25, "purchase_amount": 600, "visited_pages": ["lipstick_page"]}
]

# 筛选出女性且购买金额大于500元且浏览过口红产品页面的人群
filtered_users = []
for user in users:
    if user["gender"] == "女" and user["purchase_amount"] > 500 and "lipstick_page" in user["visited_pages"]:
        filtered_users.append(user)

print("符合条件的人群:", filtered_users)

二、Look Alike人群拓展:扩大目标受众的有效手段

Look Alike人群拓展是DMP系统的一项强大功能,它可以帮助广告主找到与已有优质人群相似的新用户,扩大潜在客户群体。

(一)拓展方式与注意事项

进行Look Alike人群拓展时,可以选择已有标签或者上传人群数据。比如,广告主已经积累了一批忠实客户数据,通过上传这些数据,让系统找到与之相似的新用户。在操作过程中,要填写人群名称、设置扩展比例并描述人群信息。

需要注意的是,扩展比例并非越大越好。当高概率相似人群数量较少时,如果扩展比例过大,算法会降低相似概率值。这就好比在一个小池塘里捞鱼,一开始捞的都是大鱼(高概率相似人群),但如果捞得太狠(扩展比例过大),就不得不捞一些小鱼(低概率相似人群),虽然鱼的数量增加了,但质量可能会有所下降。所以,在设置扩展比例时,要综合考虑已有数据和目标受众的特点,找到一个平衡点。

(二)代码示例展示拓展逻辑

下面用JavaScript代码简单模拟Look Alike人群拓展的逻辑:

// 假设已有优质人群数据
const highValueUsers = [
    { "user_id": 1, "age": 25, "interests": ["travel", "photography"] },
    { "user_id": 2, "age": 28, "interests": ["travel", "hiking"] },
    { "user_id": 3, "age": 26, "interests": ["travel", "nature"] }
];

// 模拟扩展比例
const expansionRatio = 2;

// 模拟找到相似人群的函数,这里简单随机生成相似人群数据
function findSimilarUsers(originalUsers, ratio) {
    const similarUsers = [];
    for (let i = 0; i < originalUsers.length * ratio; i++) {
        const randomIndex = Math.floor(Math.random() * originalUsers.length);
        const similarUser = {
            "user_id": i + 100,
            "age": originalUsers[randomIndex].age + Math.floor(Math.random() * 5) - 2,
            "interests": []
        };
        for (let j = 0; j < originalUsers[randomIndex].interests.length; j++) {
            if (Math.random() > 0.3) {
                similarUser.interests.push(originalUsers[randomIndex].interests[j]);
            }
        }
        similarUsers.push(similarUser);
    }
    return similarUsers;
}

const newSimilarUsers = findSimilarUsers(highValueUsers, expansionRatio);
console.log("拓展后的相似人群:", newSimilarUsers);

在实际应用中,Look Alike人群拓展可以帮助广告主以较低的成本找到潜在客户,提高广告投放的效率和效果。

通过今天对DMP系统标签制作和人群拓展的学习,我们对程序化广告的精准投放机制有了更深入的理解。这些知识在实际的广告投放中非常实用,希望大家都能有所收获。

写作不易,如果这篇文章让你对程序化广告有了新的认识,希望你能点赞、评论支持一下。也欢迎大家关注我的博客,后续我会继续分享更多程序化广告行业的精彩内容,咱们一起在这个领域不断探索前行!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值