精益数据分析(5/126):解锁创业成功的关键密码
大家好!我一直坚信在技术与商业不断融合的当下,持续学习是保持进步的唯一途径。之前我们一起探讨了《精益数据分析》的部分内容,今天咱们接着深入学习,希望通过对这篇文档的解析,能让我们在创业和数据分析的道路上更进一步,共同成长、共同进步。
一、精益创业的理念与现状
精益创业运动在过去几年发展迅猛,创造了许多如“关键转折”“最小可行化产品”这类广为人知的商业词汇 。这些理念之所以重要,是因为我们正处在工作方式变革的时代,它们处在变革的核心位置。就像埃里克·莱斯说的,精益创业系列丛书致力于将这场变革融入生活细节,而不只是停留在口号上。
不过,在看似充满冒险和激情的创业世界背后,隐藏着一个容易被忽视的关键——财务、数字和指标。传统的财务核算指标,也就是我们常说的“虚荣指标”,在衡量创新时存在很大问题。比如,一家新成立的互联网公司,只关注网站的注册用户数量,却不考虑这些用户的活跃度和付费转化率,那么注册用户数量就可能成为一个虚荣指标,它会让创业者自我感觉良好,但实际上对公司的长期发展没有太大帮助。
二、创新会计的必要性
在这种情况下,我们需要一种新的核算方法,埃里克·莱斯称之为“创新会计”。传统的财务管理方式,是将经理们的实际业绩与预测进行比较来评估他们的能力,这种方式在稳定的环境下可能效果不错。但如今世界变化太快,推出新产品或外部条件改变时,精准预测变得几乎不可能 。这时候,如果没有合适的衡量标准,我们就无法知道创业是否有进展,就算按时按预算完成了产品开发,如果做的是没人想要的产品,那也没有意义。
比如说,一家手机应用开发公司,按照计划完成了一款社交应用的开发,投入了大量资金和时间。从传统财务角度看,似乎一切顺利。但如果从创新会计的角度看,他们需要关注用户的留存率、使用时长、付费意愿等指标。如果用户下载后很快就卸载,或者使用时间极短,那就说明产品可能存在问题,需要进行调整,而不是盲目地继续按照原计划推进。
三、精益数据分析的作用
《精益创业》帮助创业者结构化地组织进展,找出商业模式中风险最大的部分并做出改变 。而《精益数据分析》则是用于衡量进展,帮助创业者提出关键问题并快速得到答案。它能让创业者厘清商业模式和增长阶段,找到第一关键指标,明确何时该加速、何时该刹车 。
比如一个在线教育平台,在创业初期,它的第一关键指标可能是课程的试听转化率,也就是有多少人试听课程后愿意付费购买。通过分析这个指标,平台可以优化课程介绍、试听内容等,提高转化率。当平台发展到一定阶段,用户留存率和用户推荐率可能就成为更关键的指标,这时平台就需要关注如何提升课程质量、增加用户粘性等。
精益分析就像是创业每个阶段的仪表盘,从验证问题的真实性,到识别目标客户,再到构建产品和寻找收购者,它都能发挥作用。它不会强制创业者完全按照数据行动,但会把数据摆在眼前,避免业务偏离正轨。
四、代码实例:利用Python分析用户留存数据
下面我们通过一个Python代码实例,来展示如何分析用户留存数据。假设我们有一个记录用户登录时间的数据集,我们可以通过这个数据集计算次日留存率和七日留存率。
import pandas as pd
from datetime import datetime, timedelta
# 模拟用户登录数据,包含用户ID和登录时间
data = {
'user_id': [1, 1, 2, 3, 3, 3, 4],
'login_time': ['2024-01-01 10:00:00', '2024-01-02 11:00:00', '2024-01-01 12:00:00', '2024-01-01 13:00:00', '2024-01-02 14:00:00', '2024-01-08 15:00:00', '2024-01-01 16:00:00']
}
df = pd.DataFrame(data)
df['login_time'] = pd.to_datetime(df['login_time'])
# 计算次日留存率
df['next_day'] = df['login_time'] + timedelta(days=1)
next_day_users = df[df['login_time'].dt.date.isin(df['next_day'].dt.date)]
unique_users = df['user_id'].nunique()
next_day_retention_users = next_day_users['user_id'].nunique()
next_day_retention_rate = next_day_retention_users / unique_users if unique_users > 0 else 0
# 计算七日留存率
df['seven_day'] = df['login_time'] + timedelta(days=7)
seven_day_users = df[df['login_time'].dt.date.isin(df['seven_day'].dt.date)]
seven_day_retention_users = seven_day_users['user_id'].nunique()
seven_day_retention_rate = seven_day_retention_users / unique_users if unique_users > 0 else 0
print(f"次日留存率: {next_day_retention_rate * 100:.2f}%")
print(f"七日留存率: {seven_day_retention_rate * 100:.2f}%")
在这段代码中,我们首先使用pandas
库读取和处理数据,将登录时间转换为日期时间格式。然后通过计算次日和七日之后仍有登录行为的用户数量,与总用户数量相比较,得出次日留存率和七日留存率。这些留存率指标对于评估产品对用户的吸引力和粘性非常重要,创业者可以根据这些指标来调整产品策略。
五、总结
通过对这篇文档的学习,我们了解了精益创业理念背后的核算问题,认识到创新会计的重要性,以及精益数据分析在创业过程中的关键作用。希望大家在实际创业或数据分析工作中,能够运用这些知识,更好地推动业务发展。
写作不易,每一个知识点的梳理、每一段代码的编写都花费了不少心血。如果这篇博客对您有所帮助,希望您能关注我的博客,点赞并留下您的评论。您的支持是我继续创作的动力,让我们一起在技术与商业的道路上探索更多精彩!