已知物体Z轴位置计算出物体的全屏长宽

本文介绍了一个实用的函数,用于计算在特定Z深度下物体在3D场景中的可见高度和宽度,这对于创建全屏物体或在屏幕边缘显示物体特别有用。通过考虑相机位置和垂直视野角度,函数能够准确计算出物体的可见尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假如想要创建一个全屏物体,或者在屏幕边缘显示,已知物体在Z轴的位置,即可用下面函数计算得出:

const visibleHeightAtZDepth = ( depth, camera ) => {
  // compensate for cameras not positioned at z=0
  const cameraOffset = camera.position.z;
  if ( depth < cameraOffset ) depth -= cameraOffset;
  else depth += cameraOffset;

  // vertical fov in radians
  const vFOV = camera.fov * Math.PI / 180; 

  // Math.abs to ensure the result is always positive
  return 2 * Math.tan( vFOV / 2 ) * Math.abs( depth );
};

const visibleWidthAtZDepth = ( depth, camera ) => {
  const height = visibleHeightAtZDepth( depth, camera );
  return height * camera.aspect;
};

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值