B.可编程拖拉机比赛
题目描述
“这个比赛,归根结底就是控制一个虚拟的小拖拉机跑完整个赛道。一般一场比赛会有 9 个到 13 个赛道,最后看能跑完多少个赛道。”
通常在一场可编程拖拉机比赛中,分别会有实际参赛队伍数 10%、20%、30% 向下取整的队伍获得金、银、铜牌,其余队伍获得荣誉提名,俗称“铁牌”。
但是主办方往往会多准备一些奖牌,那么在发奖牌的时候会按照比例向上取整发出的奖牌以减少浪费,就会有一些原本获得银牌的队伍获得了金牌。
现在给出一个赛区的规模,也就是这个赛区的实际参赛队伍数,小 Q 同学想知道有多少队伍的奖牌会由银变金、由铜变银、由铁变铜。
输入描述:
输入只有一行,包含一个整数 n (10 <= n <= 1000),表示实际参赛队伍数。
输出描述:
输出一行,包含三个由空格分隔的整数,分别表示奖牌会由银变金、由铜变银、由铁变铜的队伍数。
示例1
输入
115
输出
1 1 2
说明
按照下取整规则只发 11 块金牌的话,第 12 名原本是银牌,但是按照上取整规则发 12 块金牌,第 12 名是金牌,就由银变金了。
解题思路: 一开始感觉这题不能1A系列,突然想枚举题意。仔细想想,好像没那么复杂。可以用ceil函数解决问题(向上取整),同时也有对应的函数floor(向下取整),总体来说,这道题还是很简单的。