F 栗酱的不等式
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
有不等式y⋅x3≤ n,已知y为正整数,x为大于1的正整数,问当x和y的解数量刚好为m的时候n的最小值,如果不存在输出 -1。
输入描述:
多组数据读入。
每组数据一个数字m,如题所示。
输出描述:
每组数据输出一行,输出答案。
示例1
输入
1
输出
8
说明
当方案恰好只有一种的时候,n的最小值为8,此时y=1,x=2。
备注:
1 ≤ m ≤ 1e16
题解:二分。最近在改小习惯,从lld->I64d,没想到牛客不吃I64d有点绝望,一直觉得自己二分写的不对不对的。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main ()
{
ll m;
while (scanf("%lld",&m)!=EOF)
{
ll l=1,r=1e16;
ll ans;
while (l<r){
ll mid=(l+r-1)/2;
ll ans=0;
for(ll x=2;x*x*x<=mid;x++) ans+=mid/(x*x*x);
if(ans<m) l=mid+1;
else r=mid;
}
ans=0;
for(ll x=2;x*x*x<=l;x++) ans+=l/(x*x*x);
if(ans==m) printf("%lld\n",l);
else puts("-1");
}
return 0;
}