题意:给你一个n然后是n个数。 然后是n-1个操作符,操作符是插入在两个数字之间的。
问你最后每种不同的组合求和mod1e9+7。
和 hdu_5151 这道题有些相似。
都是以组合数的方式进行处理。
乘法: t=(dp[i][k]*dp[k+1][j])%mod;
加法: t=(dp[i][k]*A[j-k-1]+dp[k+1][j]*A[k-i])%mod;
减法: t=(dp[i][k]*A[j-k-1]-dp[k+1][j]*A[k-i])%mod;
#include<bits/stdc++.h>
#define debug(a) cout << #a << " " << a << endl
#define LL long long
#define PI acos(-1.0)
#define eps 1e-6
const int mod = 1000000007;
const int N=100+17;
LL dp[N][N],a[N];
char str[N];
LL C[N][N];
LL A[N];
using namespace std;
void init()
{
for(int i=0;i<=105;i++){
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++){
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
A[0]=1;
for(int i=1;i<=100;i++){
A[i]=A[i-1]*i%mod;
}
}
int main ()
{
//yyy_3y
//freopen("1.in","r",stdin);
int n;
init();
while(scanf("%d",&n)!=EOF){
memset(dp,0,sizeof(dp));
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
scanf("%s",str+1);
for(int l=1;l<=n;l++){
for(int i=1;i<=n-l+1;i++){
int j=i+l-1;
if(l==1) dp[i][j]=a[i];
else{
for(int k=i;k<j;k++){
LL t=0;
if(str[k]=='*') t=(dp[i][k]*dp[k+1][j])%mod;
else if(str[k]=='+') t=(dp[i][k]*A[j-k-1]+dp[k+1][j]*A[k-i])%mod;
else t=(dp[i][k]*A[j-k-1]-dp[k+1][j]*A[k-i])%mod;
dp[i][j]=(dp[i][j]+t*C[j-i-1][k-i]%mod)%mod;
}
}
}
}
printf("%lld\n",(dp[1][n]+mod)%mod);
}
return 0;
}