堆排序与选择排序的关联

堆排序与选择排序的关联


一、简单选择排序

  • 基本思想:假设排序表为 L[1…n] ,第i趟排序即从L[i,n] 中选择关键字最小的元素与 L(i) 交换,每一趟排序可以确定一个元素的最终位置,这样经过 n-1 趟排序就可以使整个排序表有序。

  • 选择排序的执行过程为每次循环遍历数组找出最小(或最大)的数,将其放在数组的有序数列的最后面,每次第i次遍历查找要执行N-i个单位时间,然后要执行N次,故时间复杂度为O(N^2),很简单,比较适合较小的数列的排序。

代码如下:


public static void changeSort(int [] arr) {
    for (int i = 0; i < arr.length-1; i++) {
        int index = i;
        for (int j = i+1; j < arr.length; j++) {
            if(arr[j] < arr[index]){
                index = j;
            }
        }
        //比完在交换,游标不稳定,故稳定性不稳定
        int temp = arr[index];
        arr[index] = arr[i];
        arr[i] = temp;
    }
}




二、堆排序

  • 而堆排序是对于选择排序的优化排序,它利用率了最大(最小)堆顶的数最大(最小)的性质,使得找到一个数组找到最大(最小)的元素的操作不需要像选择排序一样消耗N-i的时间。其时间复杂度为O(nlogn)与归并排序一样啊,空间复杂度为O(1)。

  • 在介绍堆排序的执行过程前,先要了解几个公式:

    • 对于一个根节点 i,其左子树为 2*i+1,其右子树为 2*i+2 ,而最后一个有子树的根节点 a 的位置小于等于 N/2,N是待排序数组的长度。

其执行过程如下:

1.先建立最大(最小)堆(build_heap)

1.1 将数组导入一颗完全二叉树;

img

1.2 从倒数第一个有子树的根节点开始建立堆(heapify)(操作就是通过比较和变换使得根节点的大小大于(小于)子树的大小。),然后对前面一个根节点做同样的循环操作,直到堆顶也操作结束,则完成建立整个堆。

在heapify的过程中,我们要在改变了一个子树跟根节点位置后,再向下调整其子树的子树和其子树的位置,直至最后一个子树。

img

img

img



代码如下:

package com.m.suan_pai;

import java.util.Arrays;

public class Test {
    public static void main(String[] args) {
        int arr[] = new int[]{1, 0, 2, 1, 3, 1, 4, 1, 5, 1, 6, 7, 8, 9};
        dumpSort(arr);
    }

    public static void dumpSort(int[] arr) {
        //测试,理解代码
//        int i = arr.length / 2 - 1;
//        adjust(arr, i, arr.length);
//        System.out.println(Arrays.toString(arr));
//        i--;
//        adjust(arr, i, arr.length);
//        System.out.println(Arrays.toString(arr));
//        i--;
//        adjust(arr, i, arr.length);
//        System.out.println(Arrays.toString(arr));

//        寻找最后一个非叶子节点为初始值
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            //调整大顶堆
            adjust(arr, i, arr.length);
        }

        //交换堆首与堆尾
        for (int i = arr.length - 1; i > 0; i--) {
            swap(arr, 0, i);
            adjust(arr, 0, i);
        }

        System.out.println(Arrays.toString(arr));
    }
	
    //调整大顶堆
    public static void adjust(int[] arr, int i, int length) {
        int temp = arr[i];
        for (int k = 2 * i + 1; k < length; k = k * 2 + 1) {
            if (k + 1 < length && arr[k] < arr[k + 1]) {
                k++;
            }
            if (arr[k] > temp) {
                arr[i] = arr[k];
                i = k;
            } else {
                break;
            }
        }
        arr[i] = temp;
    }
	//交换
    public static void swap(int[] arr, int a, int b) {
        int t = arr[a];
        arr[a] = arr[b];
        arr[b] = t;
    }


}


堆排序时间复杂度:O(nlogn)
堆排序对原始记录的排序状态并不敏感,其在性能上要远远好过于冒泡、简单选择、直接插入排序。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值