- 牛顿迭代法(1)
x=1:0.01:2;
y=x.^3-x.^2+sin(x)-1;
plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间
syms x
s0=diff(x^3-x^2+sin(x)-1,x,1);
% 得到s0= cos(x) - 2*x + 3*x^2
% 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2)
clear;
x=1.15;
for i=1:30
x=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2)%根据牛顿迭代法公式。一直迭代计算30次。
end
%可得 x取值为1.0935;
- 牛顿迭代法(2)
%% 绘制图形。判断跟的大概位置。
x=1:0.01:2;
f=x.^3-x.^2+sin(x)-1;
plot(x,f,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间
%%
clc,clear
syms x
f=x.^3-x.^2+sin(x)-1;%所求函数
df=diff(f,x); %求取一阶导数
eps=1e-4; %误差判断
x0=1.15; %迭代初始值。
cnt=0;
MAXCNT=20; %最大循环次数
while cnt<MAXCNT %防止无限循环
x1=x0-subs(f,x,x0)/subs(df,x,x0); %去掉这个分号,可以看到迭代过程.
if (abs(x1-x0)<eps)
break;
end
x0=x1;
cnt=cnt+1;
end
if cnt==MAXCNT
disp '不收敛'
else
vpa(x1,8)
end
- LU分解法
被调函数:
function [L,U]=lufj(A)
% 利用紧凑格式法原理 编写的LU 分解
[n,m]=size(A); % 获取A矩阵的行和列
if m~=n %判断行列相等与否
error('Not a squared matrix1');
else
A(2:n)=A(2:n)/A(1,1);
for k=2:n-1
A(k,k:n)=A(k,k:n)-A(k,1:k-1)*A(1:k-1,k:n);
A(k+1:n,k)=(A(k+1:n,k)-A(k+1:n,1:k-1)*A(1:k-1,k))/A(k,k);
end %都是根据定义进行循环计算。
end
L=A;U=A;
for i=1:n
L(i,i)=1;
L(i,i+1:n)=0;
U(i,1:i-1)=0;
end
主函数:
%% 需要调用lufj函数;
A=[-2 -2 3 5
1 2 1 -2
2 5 3 -2
1 3 2 3]
b=[-1
4
7
0]
% x=A\b %左除法求解
[L,U]=lufj(A);
x0=L\b;
x=U\x0%求出的x即为解
- 拉格朗日插值法
被调函数:
function y=lagrange(x0,y0,x);
% 根据拉格朗日插值定义编写
n=length(x0);m=length(x);
for i=1:m
z=x(i);
s=0.0;%给s的初值
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
主函数:
x=[0,1,2,4];
y=[1,9,23,3];
y0=lagrange(x,y,1.5)
- 牛顿插值
被调函数:
function yi=New_Int(x,y,xi)
%Newton基本插值公式
%x为向量,全部的插值节点
%y为向量,差值节点处的函数值
%xi为标量,是自变量
%yi为xi出的函数估计值
n=length(x);
m=length(y);
if n~=m
error('The lengths of X ang Y must be equal!');
return;
end
%计算均差表Y
Y=zeros(n);
Y(:,1)=y';
for k=1:n-1
for i=1:n-k
if abs(x(i+k)-x(i))<eps
error('the DATA is error!');
return;
end
Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));
end
end
%计算牛顿插值公式
yi=0;
for i=1:n
z=1;
for k=1:i-1
z=z*(xi-x(k));
end
yi=yi+Y(1,i)*z;
end
主函数:
clear all
clc
x0=[0.4 0.55 0.65 0.80 0.90 1.05];
y0=[0.41075 0.57815 0.69675 0.88811 1.0265 1.25382];
x1=0.596; % 待插值点。
y1=New_Int(x0,y0,x1)% y1即为待插值点的函数值。
TIP:主函数和被调函数要放在一个文件夹内。否则会引起调用错误
NOTE:本文对基本方法做了总结,你可以结合理论知识再来看代码,希望对你有所帮助