组队学习
文章平均质量分 80
YYYYYJY
这个作者很懒,什么都没留下…
展开
-
Task4 建模调参
Datawhale 零基础入门数据挖掘-Task4 建模调参四、建模与调参Tip:此部分为零基础入门数据挖掘的 Task4 建模调参 部分,带你来了解各种模型以及模型的评价和调参策略,欢迎大家后续多多交流。赛题:零基础入门数据挖掘 - 二手车交易价格预测地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX4.1 学习目标了解常用原创 2021-04-22 22:24:51 · 208 阅读 · 0 评论 -
零基础入门数据挖掘-Task3 特征工程
Datawhale 零基础入门数据挖掘-Task3 特征工程三、 特征工程目标赛题:零基础入门数据挖掘 - 二手车交易价格预测地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX3.1 特征工程目标对于特征进行进一步分析,并对于数据进行处理完成对于特征工程的分析,并对于数据进行一些图表或者文字总结并打卡。3.2 内原创 2021-04-19 21:44:55 · 173 阅读 · 0 评论 -
2021-04-16
Datawhale 零基础入门数据挖掘-Task2 数据分析二、 EDA-数据探索性分析Tip:此部分为零基础入门数据挖掘的 Task2 EDA-数据探索性分析 部分,带你来了解数据,熟悉数据,和数据做朋友,欢迎大家后续多多交流。赛题:零基础入门数据挖掘 - 二手车交易价格预测地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX2原创 2021-04-16 22:32:58 · 172 阅读 · 0 评论 -
16期学习——leetcode
task1 分治思想分支算法步骤:例题leetcode 53.最大子序和leetcode 50.pow(x,n)leetcode 169.多数元素分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子 问题逐个击破(一般是同种方法),将已经解决的子问题合并,后,算法会层层合并得到原问题的答 案。分支算法步骤:分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);治:将这些规模更小的子问题逐个击破;合:将已解决的子问题逐层合并,终得出原问题的解原创 2020-08-19 12:41:21 · 185 阅读 · 0 评论 -
cv基础组队学习(下)- Task04 HOG特征描述算⼦-行人检测
4.1 简介本次任务将学习一种在深度学习之前非常流行的图像特征提取技术——方向梯度直方图(Histogram of Oriented Gradients),简称HOG特征。HOG特征是在2005年CVPR的会议发表,在图像手工特征提取方面具有里程碑式的意义,当时在行人检测领域获得了极大成功。学习HOG特征的思想也有助于我们很好地了解传统图像特征描述和图像识别方法,本次任务我们将学习到HOG背后的设计原理,和opencv的实现。4.1.1 特征描述子通过上面两张图片,我们能清晰地分辨出是飞机和火车。原创 2020-07-06 11:34:45 · 248 阅读 · 0 评论 -
cv基础组队学习(下)-Task03 Haar特征描述算子-人脸检测
3.1简介Haar-like特征最早是由Papageorgiou等应用于人脸表示,在2001年,Viola和Jones两位大牛发表了经典的《Rapid Object Detection using a Boosted Cascade of Simple Features》和《Robust Real-Time Face Detection》,在AdaBoost算法的基础上,使用Haar-like小波特征和积分图方法进行人脸检测,他俩不是最早使用提出小波特征的,但是他们设计了针对人脸检测更有效的特征,并对Ad原创 2020-07-03 09:22:30 · 472 阅读 · 0 评论 -
cv基础组队学习(下)- Task02 LBP特征描述算⼦-⼈脸检测
2.1 简介LBP指局部二值模式(Local Binary Pattern),是一种用来描述图像局部特征的算子,具有灰度不变性和旋转不变性等显著优点。LBP常应用于人脸识别和目标检测中,在OpenCV中有使用LBP特征进行人脸识别的接口,也有用LBP特征训练目标检测分类器的方法,OpenCV实现了LBP特征的计算,但没有提供一个单独的计算LBP特征的接口。也就是说OpenCV中使用了LBP算法,但是没有提供函数接口。2.2 学习目标了解人脸检测相关流程理解LBP算法相关原理掌握基于OpenCV的L原创 2020-06-28 22:03:10 · 217 阅读 · 0 评论 -
cv基础组队学习(下)- Task01 Harris特征点检测器-兴趣点检测
1.1 简介在图像处理领域中,特征点又被称为兴趣点或者角点,它通常具有旋转不变性和光照不变性和视角不变性等优点,是图像的重要特征之一,常被应用到目标匹配、目标跟踪、三维重建等应用中。点特征主要指图像中的明显点,如突出的角点、边缘端点、极值点等等,用于点特征提取的算子称为兴趣点提取(检测)算子,常用的有Harris角点检测、FAST特征检测、SIFT特征检测及SURF特征检测。本次任务学习较为常用而且较为基础的Harris角点检测算法,它的思想以及数学理论能够很好地帮助我们了解兴趣点检测的相关原理。1.原创 2020-06-24 17:01:17 · 183 阅读 · 0 评论 -
cv基础组队学习
计算机视觉基础-图像处理(上)-Task06边缘检测1 简介1.1 什么是边缘?人通过眼睛一看就能知道大概是什么一个物体,仔细想想,其实我们也是通过物体的边缘来观察物体,边缘大体上就是指具有不同灰度的均匀图像区域的边界。沿边缘方向的灰度变化比较平缓,而边缘法线方向的灰度变化比较剧烈。1.2 如何检测边缘?图象可以认为是二维函数f(x,y),任何一对空间坐标(x, y)处f的值看作该坐标...原创 2020-05-01 16:54:02 · 451 阅读 · 1 评论 -
cv基础组队学习
计算机视觉基础-图像处理(上)-Task05 图像分割/二值化1 简介该部分的学习内容是对经典的阈值分割算法进行回顾,图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取...原创 2020-04-29 21:26:16 · 351 阅读 · 0 评论 -
cv基础组队学习
计算机视觉基础-图像处理(上)-Task04 图像滤波1 简介图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。2 学习目标了解图像滤波的分类和基本概念理解均值滤波/方框滤波、高斯滤波的原理掌握OpenCV框架下滤...原创 2020-04-28 11:34:12 · 320 阅读 · 0 评论 -
cv基础组队学习
计算机视觉基础:图像处理(上)Task03 彩色空间互转1 简介图像彩色空间互转在图像处理中应用非常广泛,而且很多算法只对灰度图有效;另外,相比RGB,其他颜色空间(比如HSV、HSI)更具可分离性和可操作性,所以很多图像算法需要将图像从RGB转为其他颜色空间,所以图像彩色互转是十分重要和关键的2学习目标了解相关颜色空间的基础知识理解彩色空间互转的理论掌握OpenCV框架下颜色空间...原创 2020-04-25 17:00:26 · 636 阅读 · 0 评论 -
cv基础组队学习
计算机视觉基础:图像处理(上)task2 几何变换该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。这次我们带着几个问题进...原创 2020-04-23 18:11:20 · 279 阅读 · 0 评论 -
cv基础组队学习
这里写自定义目录标题计算机视觉基础:图像处理(上)task1 图像插值算法-图像缩放计算机视觉基础:图像处理(上)task1 图像插值算法-图像缩放最近邻插值算法最近邻插值,是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为插值后的输出。举个简单例子:3 × 3的一张灰度图 (像素取值代表亮度,范围是0-255,越高越亮,即255白色,0黑色)假定像素矩阵如下:0 ...原创 2020-04-21 20:24:51 · 301 阅读 · 0 评论