计算机视觉,与语音识别、自然语言理解,并称为人工智能的三大主要技术领域,也是AI技术落地产业化最广泛的领域。计算机视觉是研究如何使计算机能够“看”的一门学科。
计算机视觉主要分为2D视觉和3D视觉两大研究领域
2D视觉的研究内容包括:目标识别、目标跟踪、视频内容理解等;
3D视觉的研究内容包括:基于图像的三维重建、目标三维姿态估计等。
计算机视觉算法教程,戳蓝字即可学习!
这才是新手小白入门计算机视觉教程!太详细了,一口气学完姿态估计、目标跟踪、行为识别三大主流项目!原理+源码解读,草履虫学了都能就业!机器学习|深度学习|人工智能
CV主要分为四大类 :
1.图像分类算法
图像分类是计算机视觉中最基础的任务之一。其目标是将输入图像分为不同的预定义类别。
常用的图像分类算法有:
【1】卷积神经网络(CNN)
卷积神经网络是目前图像分类任务中最常用的算法之一。它通过多层卷积、池化和全连接层来提取图像中的特征,并通过softmax函数进行分类。CNN在图像分类任务中取得了很好的效果,广泛应用于物体识别、人脸识别等领域。
【2】支持向量机(SVM)
支持向量机是一种经典的机器学习算法,也常用于图像分类任务。它通过将数据映射到高维空间,找到一个最优超平面来实现分类。SVM在处理非线性可分问题时,通过核函数的引入可以取得很好的效果。
【3】决策树(Decision Tree)
决策树是一种基于树结构的分类模型,常用于图像分类任务中。它通过一系列的判断条件对输入图像进行分类。决策树具有可解释性强的优点,可以清晰地展示分类过程。
2.目标检测算法
目标检测是CV中另一个重要的任务,其目标是在图像中定位并识别出感兴趣的目标物体。
常用的目标检测算法有:
【1】R-CNN
R-CNN是一种基于区域的卷积神经网络,广泛用于目标检测任务中。它通过首先生成一系列候选区域,然后对每个候选区域进行特征提取和分类,最后通过非极大值抑制(Non-MaximumSuppression,NMS)来得到最终的检测结果。
【2】YoLo (You only Look once)
YOLO是一种基于单阶段检测的目标检测算法。它将目标检测任务视为一个回归问题,通过将图像划分为网格并预测每个网格中的目标边界框和类别,从而实现目标检测。
【3】SSD (Single Shot MultiBox Detector)
SSD是一种基于单阶段检测的目标检测算法,类似于YOLO。它通过在不同尺度的特征图中预测边界框和类别,从而实现目标检测。SSD通过多尺度特征的融合,可以在不同尺度上检测出目标。
3.图像分割算法
图像分割是CV中的另一个重要任务,其目标是将图像划分为多个具有语义意义的区域。
常用的图像分割算法有:
【1】FCN (Fully convolutional Networks)
FCN是一种基于全卷积网络的图像分割算法。它通过将全连接层替换为全卷积层,可以对输入图像进行像素级别的分类,从而实现图像分割。
【2】U-Net
U-Net是一种用于生物医学图像分割的深度学习网络。它通过将编码器和解码器相结合的方式实现对图像进行分割。U-Net在医学图像领域取得了很好的效果。
【3】 Grabcut
GrabCut是一种基于图割(Graph Cut)的图像分割算法。它通过对输入图像进行图割操作,将图像分割为前景和背景两部分。GrabCut在一些简单的图像分割任务中具有较好的效果。
4.人脸识别算法
人脸识别是计算机视觉中的重要应用领域之一
常用的人脸识别算法有:
【1】Viola-Jones算法
Viola-Jones算法是一种经典的人脸检测算法。它通过级联分类器和积分图像的方法实现对人脸的快速检测。
【2】DeepFace
DeepFace是Facebook提出的一种基于深度学习的人脸识别算法,它通过深度神经网络学习人脸的特征表示,并通过计算欧氏距离或余弦相似度进行人脸匹配。
【3】FaceNet
FaceNet是Google提出的一种基于深度学习的人脸识别算法,它通过学习一个将人脸图像映射到高维空间中的特征向量,实现对人脸的准确识别。
1.人工智能工具软件安装包
2.深度入门到进阶课程视频
3.深度学习+机器学习+CV、NLP项目实战(含源码+数据库+论文复现教程)
实战项目内容有
pytorch、OpenCV图像处理、物体检测算法、yoloV5目标检测、图像分割实战、行为识别、transformer、
图神经网络实战、3D点云实战、多模态大模型、无人驾驶实战、缺陷检测、新人重识别、
对抗生成网络实战、医学影像分析、知识图谱、语音识别、推荐系统、扩散模型
4.深度学习+机器学习必看的50本电子书籍
5.入门到进阶学习脑图路线,配套笔记资料
计算机视觉算法整理文件https://www.bilibili.com/opus/1046710085833719808?spm_id_from=333.1387.0.0