【Leetcode】Min Stack

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.

  • getMin() -- Retrieve the minimum element in the stack.
Java:
1.不用内置stack 建了一个node class代替:
http://blog.csdn.net/ljiabin/article/details/40982153
class MinStack {
    Node top = null;

    public void push(int x) {
        if (top == null) {
            top = new Node(x);
            top.min = x;
        } else {
            Node temp = new Node(x);
            temp.next = top;
            top = temp;
            top.min = Math.min(top.next.min, x);
        }
    }

    public void pop() {
        top = top.next;
        return;
    }

    public int top() {
        return top == null ? 0 : top.val;
    }

    public int getMin() {
        return top == null ? 0 : top.min;
    }
}

class Node {
    int val;
    int min;
    Node next;

    public Node(int val) {
        this.val = val;
    }
}


2.内置stack:
http://blog.csdn.net/linhuanmars/article/details/41008731
class MinStack {
    ArrayList<Integer> stack = new ArrayList<Integer>();
    ArrayList<Integer> minStack = new ArrayList<Integer>();
    public void push(int x) {
        stack.add(x);
        if(minStack.isEmpty() || minStack.get(minStack.size()-1)>=x)
        {
            minStack.add(x);
        }
    }

    public void pop() {
        if(stack.isEmpty())
        {
            return;
        }
        int elem = stack.remove(stack.size()-1);
        if(!minStack.isEmpty() && elem == minStack.get(minStack.size()-1))
        {
            minStack.remove(minStack.size()-1);
        }
    }

    public int top() {
        if(!stack.isEmpty())
            return stack.get(stack.size()-1);
        return 0;
    }

    public int getMin() {
        if(!minStack.isEmpty())
            return minStack.get(minStack.size()-1);
        return 0;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值