HashMap原理详讲
hashing(散列法或哈希法)的概念
可以自行百度
什么是HashMap以及HashMap的构成
HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。HashMap储存的是键值对,HashMap很快。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。
数组:存储区间连续,占用内存严重,寻址容易,插入删除困难;
链表:存储区间离散,占用内存比较宽松,寻址困难,插入删除容易;
Hashmap综合应用了这两种数据结构,实现了寻址容易,插入删除也容易。
hashMap的结构示意图如下:
HashMap的基本存储原理以及存储内容的组成
基本原理:先声明一个下标范围比较大的数组来存储元素。另外设计一个哈希函数(也叫做散列函数)来获得每一个元素的Key(关键字)的函数值(即数组下标,hash值)相对应,数组存储的元素是一个Entry类,这个类有三个数据域,key、value(键值对),next(指向下一个Entry)。
例如, 第一个键值对A进来。通过计算其key的hash得到的index=0。记做:Entry[0] = A。
第二个键值对B,通过计算其index也等于0, HashMap会将B.next =A,Entry[0] =B,
第三个键值对 C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方事实上存取了A,B,C三个键值对,它们通过next这个属性链接在一起。我们可以将这个地方称为桶。 对于不同的元素,可能计算出了相同的函数值,这样就产生了“冲突”,这就需要解决冲突,“直接定址”与“解决冲突”是哈希表的两大特点。
HashMap的工作原理以及存取方法过程
HashMap的工作原理 :HashMap是基于散列法(又称哈希法hashing)的原理,使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,返回的hashCode用于找到bucket(桶)位置来储存Entry对象。”HashMap是在bucket中储存键对象和值对象,作为Map.Entry。并不是仅仅只在bucket中存储值。
HashMap具体的存取过程如下:
put键值对的方法的过程是:
1、获取key ;
2、通过hash函数得到hash值;
int hash=key.hashCode(); //获取key的hashCode,这个值是一个固定的int值
3、得到桶号(一般都为hash值对桶数求模) ,也即数组下标int index=hash%Entry[].length。//获取数组下标:key的hash值对Entry数组长度进行取余
4、 存放key和value在桶内。
table[index]=Entry对象;
get值方法的过程是:
1、获取key
2、通过hash函数得到hash值
int hash=key.hashCode();
3、得到桶号(一般都为hash值对桶数求模)
int index =hash%Entry[].length;
4、比较桶的内部元素是否与key相等,若都不相等,则没有找到。
5、取出相等的记录的value。
HashMap中直接地址用hash函数生成;解决冲突,用比较函数解决。如果每个桶内部只有一个元素,那么查找的时候只有一次比较。当许多桶内没有值时,许多查询就会更快了(指查不到的时候)。
HashMap中的碰撞探测(collision detection)以及碰撞的解决方法
当两个对象的hashcode相同时,它们的bucket位置相同,‘碰撞’会发生。因为HashMap使用LinkedList存储对象,这个Entry(包含有键值对的Map.Entry对象)会存储在LinkedList中。这两个对象就算hashcode相同,但是它们可能并不相等。 那如何获取这两个对象的值呢?当我们调用get()方法,HashMap会使用键对象的hashcode找到bucket位置,遍历LinkedList直到找到值对象。找到bucket位置之后,会调用keys.equals()方法去找到LinkedList中正确的节点,最终找到要找的值对象使用不可变的、声明作final的对象,并且采用合适的equals()和hashCode()方法的话,将会减少碰撞的发生,提高效率。不可变性使得能够缓存不同键的hashcode,这将提高整个获取对象的速度,使用String,Interger这样的wrapper类作为键是非常好的选择。
如何重新调整HashMap的大小
“如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?”
默认的负载因子大小为0.75,也就是说,当一个map填满了75%的bucket时候,和其它集合类(如ArrayList等)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置。
不可变对象的好处
上面说到使用包装类时刻作为键的原因是 String, Interger这样的wrapper类作为HashMap的键是很合适的,而且String最为常用。因为String是不可变的,也是final的,而且已经重写了equals()和hashCode()方法了。其他的wrapper类也有这个特点。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。不可变性还有其他的优点如线程安全。如果你可以仅仅通过将某个field声明成final就能保证hashCode是不变的,那么请这么做吧。因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的。如果两个不相等的对象返回不同的hashcode的话,那么碰撞的几率就会小些,这样就能提高HashMap的性能。
HashMap多线程的条件竞争
重新调整HashMap大小存在什么问题吗?”在多线程的情况下,可能产生条件竞争(race condition)。因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在LinkedList中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在LinkedList的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。(在多线程的情况下,为什么还要使用HashMap呢?不懂)
我们也可以使用自定义的对象作为键,只要它遵守了equals()和hashCode()方法的定义规则,并且当对象插入到Map中之后将不会再改变了。如果这个自定义对象时不可变的,那么它已经满足了作为键的条件,因为当它创建之后就已经不能改变了。
我们可以使用CocurrentHashMap来代替HashTable吗?这是另外一个很热门的面试题,因为ConcurrentHashMap越来越多人用了。我们知道HashTable是synchronized的,但是ConcurrentHashMap同步性能更好,因为它仅仅根据同步级别对map的一部分进行上锁。ConcurrentHashMap当然可以代替HashTable,但是HashTable提供更强的线程安全性。
ConcurrentHashMap原理分析
一、背景:
线程不安全的HashMap
效率低下的HashTable容器
锁分段技术
二、应用场景
三、源码解读
/**
* The segments, each of which is a specialized hash table
*/
final Segment<K,V>[] segments;
不变(Immutable)和易变(Volatile)
static final class HashEntry<K,V> {
final K key;
final int hash;
volatile V value;
final HashEntry<K,V> next;
}
其它
定位操作:
final Segment<K,V> segmentFor(int hash) {
return segments[(hash >>> segmentShift) & segmentMask];
}
final Segment<K,V> segmentFor(int hash) {
return segments[(hash >>> segmentShift) & segmentMask];
}
数据结构
static final class Segment<K,V> extends ReentrantLock implements Serializable {
/**
* The number of elements in this segment's region.
*/
transient volatileint count;
/**
* Number of updates that alter the size of the table. This is
* used during bulk-read methods to make sure they see a
* consistent snapshot: If modCounts change during a traversal
* of segments computing size or checking containsValue, then
* we might have an inconsistent view of state so (usually)
* must retry.
*/
transient int modCount;
/**
* The table is rehashed when its size exceeds this threshold.
* (The value of this field is always <tt>(int)(capacity *
* loadFactor)</tt>.)
*/
transient int threshold;
/**
* The per-segment table.
*/
transient volatile HashEntry<K,V>[] table;
/**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
*/
final float loadFactor; }
删除操作remove(key)
public V remove(Object key) {
hash = hash(key.hashCode());
return segmentFor(hash).remove(key, hash, null);
}
V remove(Object key, int hash, Object value) {
lock();
try {
int c = count - 1;
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1); HashEntry<K,V> first = tab[index]; HashEntry<K,V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { V v = e.value; if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry<K,V> newFirst = e.next; *for (HashEntry<K,V> p = first; p != e; p = p.next) *newFirst = new HashEntry<K,V>(p.key, p.hash, newFirst, p.value); tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } }
get操作
V get(Object key, int hash) {
if (count != 0) { // read-volatile 当前桶的数据个数是否为0
HashEntry<K,V> e = getFirst(hash); 得到头节点
while (e != null) {
if (e.hash == hash && key.equals(e.key)) {
V v = e.value;
if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } returnnull; }
V readValueUnderLock(HashEntry<K,V> e) {
lock();
try {
return e.value;
} finally {
unlock(); } }
put操作
V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
int c = count;
if (c++ > threshold) // ensure capacity
rehash();
HashEntry<K,V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K,V> first = tab[index]; HashEntry<K,V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry<K,V>(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } }
- 是否需要扩容。在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阀值,数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。
- 如何扩容。扩容的时候首先会创建一个两倍于原容量的数组,然后将原数组里的元素进行再hash后插入到新的数组里。为了高效ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。
boolean containsKey(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key))
returntrue;
e = e.next; } } returnfalse; }