#include <iostream>
using namespace std;
const int N = 12;
int n;
char s[1 << N], t[1 << N + 1];
int cnt[1 << N];
void dfs(int l, int r, int root)
{
int count = cnt[r] - cnt[l - 1];
if(count == r - l + 1) t[root] = 'I';
else if(count == 0) t[root] = 'B';
else t[root] = 'F';
if(l == r) return;
int mid = l + r >> 1;
dfs(l, mid, 2 * root);
dfs(mid + 1, r, 2 * root + 1);
}
void postOrder(int root)
{
if(root > (1 << n + 1) - 1) return;
postOrder(2 * root);
postOrder(2 * root + 1);
cout << t[root];
}
int main()
{
cin >> n >> s + 1;
for(int i = 1; i <= 1 << n; i ++)
cnt[i] = cnt[i - 1] + s[i] - '0';
dfs(1, 1 << n, 1);
postOrder(1);
return 0;
}
题目描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
1) T的根结点为R,其类型与串S的类型相同;
2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历2序列。
输入
输入的第一行是一个整数N(0<=N<=10),第二行是一个长度为2^N的“01”串。 对于40%的数据,N<=2; 对于全部的数据,N<=10。
输出
输出包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
样例输入 复制
3 10001011
样例输出 复制
IBFBBBFIBFIIIFF
提示
1二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。
2后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。
来源