- 博客(13)
- 收藏
- 关注
原创 vim 配置
" 不兼容 viset nocompatible" filetype offset backspace=indent,eol,startset foldmethod=syntax "代码折叠" 语法高亮syntax enable" 设置行号set number" 突出显示当前列set cursorline" 用浅色高亮当前行autocmd InsertLeave ...
2019-07-24 15:18:36 309
原创 django 学习笔记 使用 redis 缓存加快页面的响应速度-附一个简单的实例
前言:「redis」基于内存的数据库,响应速度到远远快于基于硬盘的「mysql」,使用方式是:直接从「redis」中读取数据,如果「redis」中没有我们需要的数据或者数据更新过,则从「mysql」中读取数据,加载到「redis」中,在将数据返回到前端页面。数据的第一次查询和加载会慢一点,但后面会快很多。「redis」的配置「redis」官方并不支持「windows」操作系统,需要通过「G...
2019-03-21 18:29:30 1442
原创 django 学习笔记1 做一个应用(简单到简陋)
目录「django」新建项目之后目录说明新建一个应用实现应用的响应第一步 写一个简单的「html页面」第二步 写一个简单的视图响应函数第三步 settings.py的配置第四步设置路由解析小结一哈我们安装好了开发环境后,开始做一个简单的应用来感受一下「django」的运行模式「django」新建项目之后目录说明上一篇文章中,说道使用「pych...
2019-03-11 17:45:44 270
原创 django 学习笔记 安装
说明:学习完慕课网上的课程「Python升级3.6 强力Django+杀手级Xadmin打造在线教育平台」,成功上线后,做的回顾总结 。感兴趣的也可以自己去入手学习一下入坑「python」的「django框架」,「python」版本是 3.6.5,「django」的版本是 2.1.7,「IDE」是「pycharm」付费版(具体的安装请自行google),使用的数据库是「mysql 8」...
2019-03-11 11:57:43 731
原创 类间关系:依赖,关联,聚合,组合的学习小结
在学习 OOP 的过程中,肯定会接触到类间关系这一概念,目前的我的认知是:类间关系就是两个大类关联和继承(不知道是否有偏差...) 关联关系可以就依据耦合度的强弱划分为:依赖,关联,聚合,组合四种(耦合度依次增强)。耦合度简单的说的就是关系的紧密程度(类 A 改变对类 B 的影响程度),详情请自行谷歌 四种关系的区别概述如下: 1. 依赖关系(Dependen...
2018-09-24 10:34:39 327
原创 python '魔法‘’函数 __call__, __repr__, __str__
python中许多的内建‘魔法’函数:最近学习到这三个:__call__, __repr__, _str__,就放到一起做个笔记。 废话不多说,直接撸上最简单的代码:class A: def __repr__(self): return '<this is __repr__>' def __call__(self): ...
2018-09-22 21:43:58 786
转载 python 递归实现二进制字符串(位串)相差固定汉明距离的所有位串
题目来自 程序设计导论(python 语言实践)的第二章,题目如下:Hamming distance. The Hamming distance between two bit strings of length n is equal to the number of bits in which the two strings differ. Compose a program that take...
2018-07-06 16:33:57 668
原创 python 实现组合以及全组合
数学中的组合概念是:从 n 个元素中不放回的取出 m 个元素组成一个组合(不考虑顺序),组合数是所有可能产生的组合的种数本列通过 26 个小写字母来演示组合的代码如下:def combination_k(s, k): ''' 字符串 s 中选取 k(0 <= k <= len(s)) 个元素,进行组合,以列表的形式返回所有可能的组合 s --> 输入的字符...
2018-07-03 22:36:02 25868 7
原创 python 之递归实现排列
前面写过一个 全排列 的递归,文章地址:https://blog.csdn.net/yzmumu/article/details/80786605 排列实现的方式与前面写过的全排列实现方式完全不同,无法进行改写,自能重新写 本篇文章是关于 排列 P(n, k) 的递归实现,不同于全排列,是从 n 个元素中选取 k 个元素组成一个排列,求出所有可能的排列。 由此可见:全排列是排...
2018-06-27 10:45:58 1290
原创 python 之递归与非递归实现全排列
全排列:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。公式:全排列数f(n)=n!(定义 n 为正整数)# 给定的元素中,抽取一定数量的元素进行排列,求排列的总数# 现以26个字母为例,从 a 开始,n 个字母的不同种排列数量为 n! 将这 n! 种不同排列进行输出 1 <= n <= 2...
2018-06-23 20:46:42 1948
原创 python 递归与非递归实现十进制转二进制
binary representation 二进制表示重复把 n 除以 2 ,然后反向读取所有的余数(即:辗转相除法)while循环实现:编写一个 while 循环完成除以 2 的任务,并顺序输出各二进制def decimal_to_binary_while_loop(n): s = '' while n > 0: s = str(n%2) + s #...
2018-06-22 17:05:55 5822 2
原创 python-递归图形之 H 树
递归图形之 H 型树基 例:当 n == 0 时什么也不画归约条件:1. 绘制构成 H 型的三条线段 2. 绘制4个 n-1 阶 H 树,分别连接到 H 的四个顶点(n-1 阶 H 树的大小是上一阶 n-2 阶 H 树的一半)代码实现如下# 调用 turtle 模块帮助可视化实现import turtle as timport randomdef set_screen...
2018-06-18 20:28:08 2950
原创 python 之格雷码
格雷码 Gray code一个 n 位二进制的格雷码就是一个包含 2**n 种不同情况的列表,每一种情况的 n 位二进制数与其上一种情况的 n 位二进制数正好有一位不同n 位二进制的格雷码生成方式如下: 1. n 位格雷码的 前 2**(n-1) 个代码字等于 n-1 位格雷码的代码字,按顺序书写,加前缀 0 2. n 位格雷码的 后 2**(n-1) 个代码字等于 n-1 位格雷码...
2018-06-18 14:49:56 2748
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人