Description
你有n种牌,第i种牌的数目为ci。另外有一种特殊的牌:joker,它的数目是m。你可以用每种牌各一张来组成一套牌,也可以用一张joker和除了某一种牌以外的其他牌各一张组成1套牌。比如,当n=3时,一共有4种合法的套牌:{1,2,3}, {J,2,3}, {1,J,3}, {1,2,J}。 给出n, m和ci,你的任务是组成尽量多的套牌。每张牌最多只能用在一副套牌里(可以有牌不使用)。
Input
第一行包含两个整数n, m,即牌的种数和joker的个数。第二行包含n个整数ci,即每种牌的张数。
Output
输出仅一个整数,即最多组成的套牌数目。
Sample Input
3 4
1 2 3
Sample Output
3
样例解释
输入数据表明:一共有1个1,2个2,3个3,4个joker。最多可以组成三副套牌:{1,J,3}, {J,2,3}, {J,2,3},joker还剩一个,其余牌全部用完。
数据范围
50%的数据满足:2 < = n < = 5, 0 < = m < = 10^ 6, 0< = ci < = 200
100%的数据满足:2 < = n < = 50, 0 < = m, ci < = 500,000,000。
一看到这道题我还以为是个简单贪心,结果就GG了。答案具有单调性,二分牌组数,关键在于check。能够用的Joker数量为min(m,min),当有牌不够,直接贪心往里填joker即可。因为如果本身是合法情况下,这样填进去一定是正确的,而如果不合法,那需要的Joker数量就会大于min(m,min)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=50+5,INF=0x7f7f7f7f;
int n,m,sum[maxn],ans;
bool judge(int mid)
{
int temp=min(mid,m);
for (int i=1;i<=n;i++)
{
if (sum[i]>=mid) continue;
temp-=(mid-sum[i]);
if (temp<0) return false;
}
return true;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&sum[i]);
int L=1,R=INF;
while (L<=R)
{
int mid=(L+R)>>1;
bool flag=judge(mid);
if (flag) ans=mid,L=mid+1;
else R=mid-1;
}
printf("%d",ans);
return 0;
}