HashMap解析(1.8版)

Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成。
在这里插入图片描述
了解下一些重要的成员变量

	//tab默认容量 16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    //tab最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认扩容因子(默认当size大于CAPACITY * DEFAULT_LOAD_FACTOR时,执行扩容)
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //当Node链表阙值大于等于8时,将会执行转换树的方法
    static final int TREEIFY_THRESHOLD = 8;
    //当Node链表阙值小于等于6时,树将会转为链表
    static final int UNTREEIFY_THRESHOLD = 6;
    //当tab数组长度大于64的时候,才会真正开始进行链表的树转换,否则优先执行扩容
    static final int MIN_TREEIFY_CAPACITY = 64;
    //数组,存储链表或者红黑树
    transient Node<K,V>[] table;
    

先着重看下hashMap的 hash()方法

//低16位和高16位做了个异或运算,它对hash code的低位添加了随机性并且混合了高位的部分特征,显著减少了碰撞冲突的发生
static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
//然后和tab.length-1 做与操作,确定对象在table中的位置
index = (table.length - 1) & hash

put方法

	public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //第一次执行put,进入resize()扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //在这里通过计算hash值和table的长度,获取头节点Node<K,V> p
        if ((p = tab[i = (n - 1) & hash]) == null)
            //如果该位置为null,新建一个头节点
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //通过hash、==、equals方法 发现头节点就是目标节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果发现该头节点是树
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //否则肯定是链表,那么根据头节点循环链表查找
                for (int binCount = 0; ; ++binCount) {
                    //如果查到链表结尾还未发现目标,则新建一个节点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //如果发现链表的长度达到阙值,开始执行树转换
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //发现目标
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //如果找到了目标节点,value替换
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //这里需要扩容的阙值threshold在resize方法中会进行计算,方便下次扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

在了解扩容方法之前,先要了解下,扩容之后,是怎么高效重新计算元素的位置

数组的大小永远是一个2次幂,在扩容之后,一个元素的新索引要么是在原位置,要么就是在原位置加上扩容前的容量。这个方法的巧妙之处全在于&运算,之前提到过&运算只会关注n – 1(n = 数组长度)的有效位,当扩容之后,n的有效位相比之前会多增加一位(n会变成之前的二倍,所以确保数组长度永远是2次幂很重要),然后只需要判断hash在新增的有效位的位置是0还是1就可以算出新的索引位置,如果是0,那么索引没有发生变化,如果是1,索引就为原索引加上扩容前的容量。
扩容resize()
图示:
在这里插入图片描述

resize方法()

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        //初始化新的容量 和 扩容阙值
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //如果容量已经达到最大值,直接返回
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //容量直接变为2倍,扩容阙值也是2倍,如果这是第二次扩容的话,默认情况下
            //newCap = 32,newThr = 24
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //oldCap=0,但是oldThr > 0,说明用户创建HashMap指定了容量
        else if (oldThr > 0)
            newCap = oldThr;
        else {
            //这里是第一次扩容,初始化默认容量
            newCap = DEFAULT_INITIAL_CAPACITY;
            //计算下次扩容的阙值,0.75 * 16 = 12
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            // 如果newThr还没有被赋值,那么就根据newCap计算出阈值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //下次扩容的阙值诞生了
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        //如果老的数组不为空,说明是扩容不是第一次创建
        if (oldTab != null) {
            //循环老的数组,将元素移到新的列表
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //如果只有头节点,那么直接根据hash移到新的数组
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //树的原理一样
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else {
                        //在这里分为俩组链表lowNode heightNode
                        //通过hash & oldCap 和旧的容量进行比较
                        //如果为0则位置不动,如果不为0,则位置= 原index+oldCap
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

remove()

public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //查询头节点Node<K,V> p
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //头节点正好是目标节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                //节点是树
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //头节点不是,循环查找
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //如果查找到目标节点
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                //如果是头节点
                else if (node == p)
                    tab[index] = node.next;
                //说明是链表中的其他节点
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

最后来看下get()

public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //如果table不为空、并且根据hash值计算能获取头节点
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //头节点就是目标节点
            if (first.hash == hash &&
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //如果是树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //循环寻找目标节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

关于红黑树部分,暂时略过,后面会开新的篇章进行讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值