Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成。
了解下一些重要的成员变量
//tab默认容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//tab最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认扩容因子(默认当size大于CAPACITY * DEFAULT_LOAD_FACTOR时,执行扩容)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//当Node链表阙值大于等于8时,将会执行转换树的方法
static final int TREEIFY_THRESHOLD = 8;
//当Node链表阙值小于等于6时,树将会转为链表
static final int UNTREEIFY_THRESHOLD = 6;
//当tab数组长度大于64的时候,才会真正开始进行链表的树转换,否则优先执行扩容
static final int MIN_TREEIFY_CAPACITY = 64;
//数组,存储链表或者红黑树
transient Node<K,V>[] table;
先着重看下hashMap的 hash()方法
//低16位和高16位做了个异或运算,它对hash code的低位添加了随机性并且混合了高位的部分特征,显著减少了碰撞冲突的发生
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//然后和tab.length-1 做与操作,确定对象在table中的位置
index = (table.length - 1) & hash
put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//第一次执行put,进入resize()扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//在这里通过计算hash值和table的长度,获取头节点Node<K,V> p
if ((p = tab[i = (n - 1) & hash]) == null)
//如果该位置为null,新建一个头节点
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//通过hash、==、equals方法 发现头节点就是目标节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果发现该头节点是树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//否则肯定是链表,那么根据头节点循环链表查找
for (int binCount = 0; ; ++binCount) {
//如果查到链表结尾还未发现目标,则新建一个节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果发现链表的长度达到阙值,开始执行树转换
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//发现目标
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果找到了目标节点,value替换
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//这里需要扩容的阙值threshold在resize方法中会进行计算,方便下次扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
在了解扩容方法之前,先要了解下,扩容之后,是怎么高效重新计算元素的位置
数组的大小永远是一个2次幂,在扩容之后,一个元素的新索引要么是在原位置,要么就是在原位置加上扩容前的容量。这个方法的巧妙之处全在于&运算,之前提到过&运算只会关注n – 1(n = 数组长度)的有效位,当扩容之后,n的有效位相比之前会多增加一位(n会变成之前的二倍,所以确保数组长度永远是2次幂很重要),然后只需要判断hash在新增的有效位的位置是0还是1就可以算出新的索引位置,如果是0,那么索引没有发生变化,如果是1,索引就为原索引加上扩容前的容量。
扩容resize()
图示:
resize方法()
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
//初始化新的容量 和 扩容阙值
int newCap, newThr = 0;
if (oldCap > 0) {
//如果容量已经达到最大值,直接返回
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//容量直接变为2倍,扩容阙值也是2倍,如果这是第二次扩容的话,默认情况下
//newCap = 32,newThr = 24
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//oldCap=0,但是oldThr > 0,说明用户创建HashMap指定了容量
else if (oldThr > 0)
newCap = oldThr;
else {
//这里是第一次扩容,初始化默认容量
newCap = DEFAULT_INITIAL_CAPACITY;
//计算下次扩容的阙值,0.75 * 16 = 12
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 如果newThr还没有被赋值,那么就根据newCap计算出阈值
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//下次扩容的阙值诞生了
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果老的数组不为空,说明是扩容不是第一次创建
if (oldTab != null) {
//循环老的数组,将元素移到新的列表
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果只有头节点,那么直接根据hash移到新的数组
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
//树的原理一样
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else {
//在这里分为俩组链表lowNode heightNode
//通过hash & oldCap 和旧的容量进行比较
//如果为0则位置不动,如果不为0,则位置= 原index+oldCap
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
remove()
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//查询头节点Node<K,V> p
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//头节点正好是目标节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
//节点是树
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
//头节点不是,循环查找
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//如果查找到目标节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//如果是头节点
else if (node == p)
tab[index] = node.next;
//说明是链表中的其他节点
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
最后来看下get()
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果table不为空、并且根据hash值计算能获取头节点
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//头节点就是目标节点
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果是树
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//循环寻找目标节点
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
关于红黑树部分,暂时略过,后面会开新的篇章进行讲解