AI大模型:(一)1.大模型的发展与局限

目录

1.机器学习的发展史

2.GPT大模型发展历程

3.大模型的发展局限性


       说起AI大模型不得不说下机器学习的发展史,机器学习包括传统机器学习、深度学习,而大模型(Large Models)属于机器学习中的深度学习(Deep Learning)领域,具体来说,它们通常基于神经网络架构。

1.机器学习的发展史

       机器学习技术的发展历程可以追溯到20世纪50年代,当时提出了感知机、神经网络等概念。80年代末期,反向传播算法的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。21世纪以来,随着数据量的增加、计算能力的提升和算法的改进,机器学习技术进入了深度学习时代,取得了令人瞩目的成就。机器学习技术在很多领域都有应用,例如图像识别、自然语言处理、推荐系统等,为人类社会带来了巨大的价值和意义。

机器学习技术的发展可以分为以下几个阶段:

1. 早期阶段:上世纪50年代到70年代初期,机器学习被视为人工智能的一个子领域。这个阶段的主要方法是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hay_lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值