- 博客(390)
- 收藏
- 关注
原创 处理视频帧率的完整解决方案
import osimport subprocessfrom flask import Flask, request, jsonify, send_filefrom werkzeug.utils import secure_filenameimport uuidapp = Flask(__name__)app.config['UPLOAD_FOLDER'] = 'uploads'app.config['PROCESSED_FOLDER'] = 'processed'app.config['
2025-05-15 08:58:59
440
原创 计算机视觉代码优化
代码优化是软件开发中的关键环节,旨在提升程序效率、降低资源消耗、增强代码可读性和可维护性,以及改善系统可扩展性。优化应避免过早进行,优先确保代码功能正确,再针对性能瓶颈进行优化。核心优化方向包括性能优化(如算法与数据结构优化、减少IO操作、利用缓存)、可读性优化(如语义化命名、拆分长函数、添加必要注释)和架构优化(如减少模块耦合、引入设计模式、分层架构设计)。工具和方法包括性能分析工具、静态代码检查工具和自动化测试。最佳实践包括优先解决关键瓶颈、保持代码简洁、团队协作优化和持续迭代。代码优化是开发者提升软件
2025-05-15 08:50:41
833
原创 使用Word2Vec算法实现古诗自动生成实战
本文介绍了一个基于机器学习技术的古诗生成系统,旨在通过分析3万首唐诗宋词,实现输入关键词即可生成符合平仄韵律的五言或七言诗句。技术路线包括数据预处理、Word2Vec训练、向量空间构建、生成模型、格律校验和古诗输出。核心算法采用Word2Vec的CBOW和Skip-Gram模式,通过神经网络学习词向量,并结合LSTM和Transformer模型进行诗句生成。系统还包括格律校验模块,确保生成的诗句符合传统诗歌的平仄要求。此外,文章还探讨了性能优化策略,如混合模型架构、注意力机制增强和强化学习优化,并提出了该系
2025-05-14 12:09:17
976
原创 建立多项式朴素贝叶斯模型实战指南
本文详细介绍了使用多项式朴素贝叶斯(MultinomialNB)进行文本分类任务(如垃圾邮件识别)的全流程。首先,文章强调了MultinomialNB在处理离散型特征(如词频、TF-IDF值)时的优势,并对比了其与高斯朴素贝叶斯和伯努利朴素贝叶斯的适用场景。接着,文章提供了Python代码示例,展示了如何创建、训练和预测模型。在模型评估部分,文章指出在类别不平衡数据中,应使用多维评估指标(如准确率、精确率、召回率和F1 Score)来全面评估模型性能。此外,文章还介绍了模型的持久化与部署方法,包括模型保存、
2025-05-14 12:05:35
744
原创 使用贝叶斯算法完成垃圾邮件分类实战
垃圾邮件识别是电子邮件管理中的一大挑战,传统方法如关键词匹配和校验码验证存在误判率高和易被规避的问题。贝叶斯分类方法通过计算词汇在垃圾邮件中的联合概率,实现了更精准的分类,其优势在于动态适应新词汇和表达方式,数据量越大分类效果越好,并支持概率化评估。本文详细介绍了朴素贝叶斯算法的核心原理,包括朴素贝叶斯公式、关键计算步骤和零概率问题的处理(使用拉普拉斯平滑)。此外,还提供了Python实现的完整流程,包括数据准备、中文分词处理、特征向量化、训练集/测试集划分、模型训练与评估等步骤。实验结果表明,贝叶斯分类方
2025-05-14 12:00:54
482
原创 朴素贝叶斯四种模型
本文展示了两种贝叶斯方法在数据分类和聚类中的应用。首先,使用高斯朴素贝叶斯模型对鸢尾花数据集进行分类,通过训练和测试集拆分、模型训练、预测及评估,得到了分类准确率、混淆矩阵和分类报告,并可视化结果。其次,利用贝叶斯混合模型对模拟数据进行聚类,通过定义模型、运行MCMC采样、绘制后验分布图,最终实现了数据点的聚类,并可视化聚类结果。两种方法均通过Python实现,并保存了相关图表。
2025-05-13 14:00:45
826
原创 朴素贝叶斯四种模型
该代码展示了如何使用朴素贝叶斯分类器进行文本分类。首先,使用多项式朴素贝叶斯对垃圾邮件进行分类,通过词袋模型提取文本特征,并对测试数据进行预测。接着,使用伯努利朴素贝叶斯进行文本情感分类,采用二元特征表示文本,并对测试数据进行情感预测。最后,通过生成随机数据对比了多项式朴素贝叶斯和伯努利朴素贝叶斯的分类准确率。代码展示了两种朴素贝叶斯模型在不同文本分类任务中的应用,并提供了对比分析,帮助理解它们的性能差异。
2025-05-13 13:59:32
910
原创 直方图特征结合 ** 支持向量机图片分类
本文介绍了一种基于直方图特征和SVM(支持向量机)的图像分类技术框架。该框架首先通过颜色直方图和HOG(方向梯度直方图)提取图像的颜色和形状特征,接着将特征向量化并用于训练多分类SVM模型。文章详细阐述了数据预处理、特征提取、模型训练与评估的步骤,并提供了基于scikit-learn和OpenCV的代码实现。此外,还讨论了直方图参数选择、特征可视化、优化策略(如特征工程增强、模型优化、计算效率提升)以及应用场景扩展(如交通标志识别、医学图像分类等)。该方案具有计算高效、对平移旋转鲁棒的特点,适合中小规模数据
2025-05-12 09:09:41
991
原创 函数讲解知识
高斯核函数(Gaussian Kernel Function),也称为径向基函数(RBF)核,是机器学习中常用的核函数之一。其表达式为 (K(\mathbf{x},\mathbf{z})=\exp\left(-\frac{|\mathbf{x}-\mathbf{z}|^2}{2\sigma^2}\right)),其中 (\sigma) 是带宽参数,控制函数的宽度和光滑度。高斯核函数具有局部性、无限维映射和光滑性等特点,广泛应用于支持向量机(SVM)、核主成分分析(KPCA)和高斯过程回归等领域,帮助处理非线
2025-05-12 08:54:50
900
原创 支持向量机与逻辑回归的区别及 SVM 在图像分类中的应用
支持向量机(SVM)和逻辑回归(LR)是两种常用的监督学习算法,尽管它们都用于分类任务,但在原理和应用上存在显著差异。SVM通过最大化间隔来确定分类超平面,适用于高维数据和非线性问题,但对大规模数据计算效率较低。逻辑回归则通过概率估计进行分类,适合大规模数据但处理非线性问题能力较弱。在图像分类中,SVM通过提取图像特征(如HOG或CNN)并进行模型训练,广泛应用于人脸识别、物体检测等领域。通过调整超参数和使用网格搜索,可以优化SVM模型性能。总体而言,SVM和LR各有优势,需根据具体任务选择合适的算法。
2025-05-11 10:47:41
815
原创 支持向量机的回归用法详解
支持向量机(SVM)不仅适用于分类任务,在回归问题中也有广泛应用。SVM回归通过定义一个常量(\epsilon),允许数据点在(\epsilon)范围内无损失,超出范围则产生损失,从而拟合回归超平面。其核心目标是在保证样本点偏差在(\epsilon)范围内的前提下,使回归超平面尽可能平缓,以最小化数据样本间的相对距离。SVM回归还引入了软间隔机制,增强模型对异常点的鲁棒性。在Python的Scikit-learn库中,可通过LinearSVR和SVR类分别实现线性和非线性SVM回归。线性回归通过调整(\ep
2025-05-11 10:45:28
695
原创 python办公
Python在办公自动化中展现出强大的功能,能够高效处理多种日常任务。通过使用不同的库,Python可以轻松操作Excel、Word和PDF文件,实现数据的读取、写入和修改。此外,Python还能自动化发送电子邮件,管理文件系统,以及抓取网页内容。例如,使用openpyxl处理Excel,python-docx操作Word文档,PyPDF2读取PDF,smtplib发送邮件,os和shutil管理文件,requests和BeautifulSoup进行网页抓取。这些工具和方法大大减少了重复性工作,显著提升了办
2025-05-10 10:56:51
196
原创 深度学习全流程解析
本文详细解析了深度学习的全流程,从数据准备到模型部署的每个关键步骤。首先,数据准备阶段包括数据收集、清洗、预处理和增强,确保数据质量。接着,模型开发阶段涉及架构设计、损失函数选择和优化器配置。模型训练阶段则关注训练集划分、过程监控和正则化策略。模型评估阶段通过多种指标和错误分析验证效果。模型优化阶段包括超参数调优和模型压缩。最后,部署落地阶段涵盖不同部署形式和持续监控。文章还指出了常见误区及解决方案,并强调数据质量的重要性。整体上,文章提供了深度学习项目的系统化方法论和实操建议,适合作为项目开发的参考指南。
2025-05-10 10:52:14
620
原创 豆包的使用
豆包是一款多功能智能助手,旨在帮助用户高效应对信息爆炸时代的各种挑战。其核心功能包括知识问答、文本创作、代码编程、数据分析、语言翻译和创意生成,覆盖学术研究、写作辅助、开发支持、商业决策、跨文化沟通及灵感激发等多个应用场景。通过清晰、具体的指令,用户可快速获取权威解答、优化文本、解决技术难题、分析数据、翻译文档或激发创意。高效使用豆包的技巧包括明确需求、分步沟通和及时反馈,以确保获得最佳结果。豆包致力于为用户提供智能交互的新体验,助力学习、工作和生活中的各类需求。
2025-05-09 11:50:53
643
原创 使用SVM进行图像分类
该代码实现了一个基于HOG(方向梯度直方图)特征和SVM(支持向量机)的图像分类器。主要步骤包括:1) 加载图像数据并划分训练集和测试集;2) 使用HOG提取图像特征,并进行标准化和PCA降维;3) 训练SVM模型,并通过准确率、分类报告和混淆矩阵评估模型性能;4) 提供单张图像的预测功能,输出预测类别和置信度。代码结构清晰,适用于多类别图像分类任务,并支持可视化特征和混淆矩阵。
2025-05-09 08:47:29
974
原创 支持向量机案例
本文介绍了使用支持向量机(SVM)对鸢尾花数据集进行分类的案例。首先,数据集包含四个属性(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和三个类别(山鸢尾、变色鸢尾、维吉尼亚鸢尾)。数据准备阶段,导入必要的库并读取数据集,将数据分为特征和目标,并划分为训练集和测试集。接着,创建并训练线性核函数的SVM模型。模型评估阶段,使用测试集进行预测并计算准确率。最后,通过分析准确率和其他指标(如混淆矩阵、精确率、召回率)评估模型性能,并建议通过调整核函数和超参数来优化模型。
2025-05-09 08:43:46
467
原创 Python开发系统
其他颜色可自定义HSV范围(如绿色:lower=[35, 43, 46], upper=[77, 255, 255])edges = cv2.Canny(img, 100, 200) # 调整阈值控制边缘灵敏度。print("\n==== OpenCV图像检测系统 ====")plt.title(f"检测结果 - 功能{choice}")print("1. 目标检测(YOLOv3)")print("3. 边缘检测(Canny)")print("2. 颜色检测(红色)")print("系统退出!
2025-05-08 19:10:39
813
原创 Python奶茶系统
count = int(input(f"请输入{drink}购买数量:"))"珍珠奶茶": {"price": 12, "stock": 50},"波霸奶茶": {"price": 15, "stock": 40},"奶盖绿茶": {"price": 18, "stock": 30},"水果茶": {"price": 20, "stock": 25}print("\n==== 奶茶店管理系统 ====")print("\n==== 奶茶菜单 ====")print("\n==== 订单记录 ====")
2025-05-08 19:09:10
466
原创 支持向量机应用
SVM 通过核技巧和间隔最大化策略,在分类任务中展现出卓越性能。几何直观性:决策边界可解释,支持向量体现关键判别样本。灵活性:通过核函数适应线性与非线性问题。理论完备性:基于统计学习理论,泛化误差有严格界。尽管深度学习在大数据场景中表现优异,但 SVM 在小样本、高维数据、可解释性要求高的场景中仍具不可替代性。未来,SVM 与深度学习的融合(如深度 SVM)将进一步拓展其应用边界。
2025-05-07 14:08:07
827
原创 支持向量机
支持向量机(Support Vector Machine,SVM)是一种有监督的机器学习算法,可用于分类和回归任务,尤其在分类问题上表现出色。下面将从原理、数学模型、核函数、优缺点和应用场景等方面详细介绍。
2025-05-07 14:06:21
633
原创 python掌握知识
无论是 Web 开发、数据科学与机器学习,还是自动化运维与测试、游戏开发等,都有 Python 的用武之地。若想凭借 Python 技能实现就业,就需要依据不同的就业方向,有针对性地掌握相关知识和技能。不同的 Python 就业方向所需掌握的知识和技能各有侧重,但 Python 基础语法是共同的基础。在学习过程中,应根据自己的兴趣和职业规划,有针对性地深入学习相关领域的知识和技能,并通过实践项目不断积累经验,提高自己的编程能力和解决实际问题的能力,从而增加就业的竞争力。
2025-05-07 14:04:38
1113
原创 AI养老检测项目
span class="status-indicator {% if camera.status == '运行中' %}online{% else %}offline{% endif %}"></span>logger.info(f"系统配置: FPS={Config.FPS}, 设备={Config.DEVICE}, 分辨率={Config.DISPLAY_SIZE}")logger.info(f"摄像头 {self.cam_id} ({self.cam_name}) 处理器启动")
2025-05-06 14:43:07
1194
原创 如何学习人工智能
专科生的AI逆袭之路,本质是用三年时间完成别人需要五年的技术压缩,关键在于把每个学习场景都变成能力炼金炉。记住:在AI时代,持续进化的能力比起点更重要,而你,正站在时代浪潮的最前沿。选择Python作为主战语言,遵循"721学习法则":70%时间写代码(LeetCode初级算法题库),20%时间读源码(从numpy基础函数入手),10%时间做总结。
2025-05-06 10:23:48
547
原创 创建AI摄像头完整过程
API接口</a></li><li class="mb-2"><a href="#" class="text-white text-decoration-none">SDK下载</a></li><li class="mb-2"><a href="#" class="text-white text-decoration-none">核心功能
2025-05-06 10:21:52
539
原创 期末代码Python
print(f"学号:{s.sid},姓名:{s.name},成绩:{s.score}")new_score = float(input("请输入新成绩:"))print("\n===== 学生信息管理系统 =====")score = float(input("请输入成绩:"))sid = input("请输入要查询的学号:")sid = input("请输入要修改的学号:")sid = input("请输入要删除的学号:")"""转为字典格式,方便存储"""sid = input("请输入学号:")
2025-05-05 15:24:17
519
原创 期末项目Python
1. 选难度适配:根据自身水平选择(如新手优先控制台程序,进阶可选 GUI/爬虫)。- 数据存储:使用文件( txt / csv )或 SQLite 数据库。- 绘制全国/省份疫情趋势图(动态图表,用 pyecharts )- 录入、查询、修改、删除学生信息(姓名、学号、成绩等)数据源:国家卫健委公开数据(JSON/CSV)- API 数据获取( requests )- 猜数字游戏(计算机生成随机数,用户猜)- 随机数生成( random 模块)- 会员管理(注册、登录、积分规则)
2025-05-05 15:23:27
236
原创 详细案例,集成算法
test['Survived'] = best_rf.predict(X_test) # 或用xgb_model.predict(X_test)- XGBoost显示性别(Sex_female)、船舱等级(Pclass)、年龄(Age)是最重要的生存预测因素(见特征重要性图)。print("RF准确率:", accuracy_score(y_train, y_pred_rf)) # 示例输出:~0.85。目标:根据乘客特征(如年龄、船舱等级等)预测生存与否(0=遇难,1=存活)。1. 模型评估(训练集)
2025-05-04 22:36:24
558
原创 集成算法学习
组合优势:结合多个简单模型(如决策树),通过“少数服从多数”或“加权平均”等策略,降低方差、偏差或过拟合风险。- 实践:用Scikit-Learn实现随机森林,用XGBoost实战Kaggle数据集(如泰坦尼克号生存预测)。- max_features (特征抽样比例):默认 auto (\sqrt{n}),降低可提升多样性。- 从原始数据中随机有放回抽样,生成多个子集,训练多个独立模型(如随机森林)。- 先用简单模型(如RF)快速验证,再用复杂模型(如XGBoost)调优。
2025-05-04 22:35:25
502
原创 C语言蓝桥杯真题代码
/ 公式:f(n) = n(n+1)/2 + 1。// 假设初始1的卡片有2021张,其他数字足够多(题目中1的卡片最先用完)if (n <= 2) { // 少于3个数时,公差可为0或任意,直接输出0。3. 调试:用样例输入验证代码逻辑,尤其是边界情况(如n=0、n=1)。if (min_d == 0) { // 所有数相同,无需添加。
2025-05-03 18:36:15
441
原创 Python蓝桥杯真题代码
print("输入不符合要求,请输入一个长度大于等于3且只包含小写字母的字符串。S = input("请输入一个只包含小写字母的字符串(长度>=3):")input_str = input("请输入一个字符串:")break # 满足要求后就不需要再遍历了。第十四届青少年蓝桥杯python组省赛真题。# 获取第一个和最后一个字符。第十届蓝桥杯省赛研究生组真题。# 确保输入符合要求。
2025-05-03 18:35:12
424
原创 Python智能体开发
self.q_table = np.zeros((maze.shape[0], maze.shape[1], len(self.actions))) # Q表。1. **Q表结构**:`q_table[行][列][动作]` 存储每个状态-动作对的预期收益。2. **调整超参数**:尝试不同的`alpha`(学习率)和`gamma`(未来奖励折扣)3. **多智能体协作**:使用`PettingZoo`库实现多Agent系统。1. **可视化Q表**:`print(agent.q_table)`
2025-05-02 17:14:55
615
原创 人工智能项目开发项目
**开源框架**:AutoGPT(自主Agent)、LangChain(LLM集成)、Meta AI的Habitat(具身智能)。- **工具链**:TensorFlow/PyTorch、ROS(机器人)、Rasa(对话系统)。- **数据处理**:图像识别(CNN)、语音识别(ASR)、自然语言理解(NLU)。- **算法框架**:强化学习(RL)、深度学习(DL)、符号逻辑AI,或混合架构。4. **评估指标**:胜率(游戏)、响应时间(客服)、安全性(自动驾驶)。
2025-05-02 17:12:37
461
原创 蓝桥杯Python案例
for i in range(2, int(math.sqrt(n)) + 1): # 遍历到√n。题目描述:输入整数 n ,计算 1² + 2² + 3² + ... + n² 的值。题目描述:判断一个数 n 是否为质数(质数定义:大于1且只能被1和自身整除的数)。- 遍历 2 到 √n 的数,若存在能整除 n 的数,则不是质数。2. 边界测试:测试极端情况(如 n=0 、 n=1 、空字符串)。for i in range(1, n + 1): # 遍历1到n。
2025-05-01 21:09:21
579
原创 如何拿奖蓝桥杯
大量刷题练习:利用蓝桥杯官方练习题集、力扣、牛客网等平台刷题,注重分析题目,尝试不同方法解题,总结解题思路和技巧,形成自己的解题模板和方法库。- 研究真题规律:深入研究历年真题,了解命题风格、难度分布和常考知识点,把握解题思路和方法的规律,注意真题的时间和空间限制,模拟比赛环境练习。- 参加模拟赛:参加线上或线下模拟赛,按照比赛规则和时间要求答题,模拟真实场景,学会合理分配时间,调整答题策略,发现不足及时改进。
2025-05-01 21:08:09
470
原创 蓝桥杯比赛
包括Java软件开发、C/C++程序设计、Python程序设计、Web应用开发、嵌入式设计与开发、单片机设计与开发、物联网设计与开发、EDA设计与开发以及青少年创意编程组。- 总决赛:个人赛根据相应组别分别设立一、二、三等奖及优秀奖,其中一等奖不高于5%,二等奖占20%,三等奖不低于35%,优秀奖不超过40%。- 省赛:每个组别设置一、二、三等奖,原则上各奖项的比例为10%、20%、30%。从2009年开始举办,截至2025年4月已举办14届。省赛一般在每年的4月,国赛一般在每年的5月。
2025-05-01 21:07:26
286
原创 智能体案例
以下是一个用 Python 开发 任务型智能体 的简单案例,实现自动查询天气并发送提醒的功能,涉及 API 调用、数据处理和定时任务。f"风速:{weather_data['wind_speed']} m/s\n"f"当前温度:{weather_data['temp']}℃\n"f"天气状况:{weather_data['text']}\n""lang": "zh-Hans" # 返回中文结果。print("智能体已启动,每天 8:00 发送天气提醒...")print(f"获取天气失败:{e}")
2025-04-30 13:21:30
377
原创 智能体开发
框架工具:LangChain(构建链状智能体)、AutoGPT(自主决策)、Microsoft Semantic Kernel(语义内核)。- 社区:GitHub(搜索“AI agent”获取项目案例)、Hugging Face(模型库)。- 框架:Haystack(问答系统)、Finetune(模型微调工具)。- 自然语言处理(NLP):用于对话智能体(如ChatGPT类模型)。- 开发语言:Python(主流)、JavaScript(前端交互)。
2025-04-30 13:20:19
406
计算机视觉领域 + YOLO 模型 + 视频监控图像分析 + 用于安防项目
2025-05-09
图像处理技术 + Python+OpenCV + 车辆双黄线违规检测代码
2025-05-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人