总的说,这道题目就是要求一个双关键字的最长序列,并让你数出来
关键字是给你的ci,wi
若我们按照ci+wi来进行排序,我们可以证明最有序列必然存在于这个排过序的序列中
证明:
我们令S[i]=W[1]+..+W[I]
若右移最有排列不是按照W[i]+C[i]排序,则必有
W[x]+C[x]>W[x+1]+C[x+1]
那他还能承受min{C[x]-S[x-1], C[x+1]-W[x]-S[x-1]}
若我们的排序的决定是错误的,我们将他交换,结果就会变优
那他能承受min{C[x+1]-S[x-1], C[x]-S[x-1]-W[x+1]}
显然 C[x+1]-S[x-1]>C[x+1]-W[x]-S[x-1], C[x]-S[x-1]>C[x]-S[x-1]-W[x+1]
所以我们只需比较C[x]-S[x-1]-W[x+1]和C[x+1]-W[x]-S[x-1]的值的大小
约去一个S[x-1]之后得 C[x]+W[x] 和C[x+1]+W[x+1]
就是说现在x和x+1谁排在前面取决于C+W,
若C[x]+W[x]>C[x+1]+W[x+1], x+1排前面,否则x排前面,
所以我们排序决定正确
在此鸣谢诸位大神日刷6题君737566563,liouzhou_101
我们依次处理每个元素,若能够插入尾部,就放;若wj>wi则替换;
队列有优先队列
const int N = 200010;
struct Node {
LL C, W;
inline bool operator <(const Node &A) const { return C < A.C; }
} Dat[N];
priority_queue<LL> Q;
int n, Ans;
inline void Input() {
scanf("%d", &n);
Rep(i, n) cin >> Dat[i].C >> Dat[i].W, Dat[i].C += Dat[i].W;
}
inline void Solve() {
/* Init Begin */
sort(Dat, Dat + n);
LL Total = 0;
/* Init End */
Rep(i, n) {
LL Weight = Dat[i].W, Top;
if(Dat[i].C - Weight >= Total) Q.push(Weight), Total += Weight, Ans++;
else if(Weight < (Top = Q.top())) Total += Weight - Top, Q.pop(), Q.push(Weight);
}
cout << Ans << endl << Total << endl;
}
int main() {
#ifndef ONLINE_JUDGE
SETIO("1148");
#endif
Input();
Solve();
return 0;
}