本题出自LeetCode1547每日一题切棍子的最小成本,今天双十一,倒是剁起了棍子,虽然说标签是困难,但这道题肯定是没那么难的,因为很快就发现这是一道标准的动态规划或者用递归做
题目
有一根长度为
n
个单位的木棍,棍上从0
到n
标记了若干位置。例如,长度为 6 的棍子可以标记如下:
给你一个整数数组
cuts
,其中cuts[i]
表示你需要将棍子切开的位置。你可以按顺序完成切割,也可以根据需要更改切割的顺序。
每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。
返回切棍子的 最小总成本 。
示例 1:
输入:n = 7, cuts = [1,3,4,5] 输出:16 解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:
第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。 而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。示例 2:
输入:n = 9, cuts = [5,6,1,4,2] 输出:22 解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。提示:
2 <= n <= 10^6
1 <= cuts.length <= min(n - 1, 100)
1 <= cuts[i] <= n - 1
cuts
数组中的所有整数都 互不相同
解题思路
问题背景
想象你有一根很长的木棍,你需要在某些特定的位置将它切成几段。每次切割的成本等于你要切割的那部分木棍的长度。你的目标是以最低的成本完成所有切割。
解决方案
为了找到最低的成本,我们需要考虑的是如何选择切割的顺序。但是直接考虑所有可能的切割顺序是非常复杂的,所以我们采用了一种叫做“动态规划”的方法来简化问题。
动态规划的基本思想
- 状态定义:我们用
f[i][j]
来表示从第i
个切割点到第j
个切割点之间(包括这两个点)完成所有切割所需的最小成本。- 状态转移:假设我们在
i
到j
之间的某个点k
做了第一次切割,那么这次切割会将木棍分成两部分,左边是从i
到k-1
,右边是从k+1
到j
。这时,我们的问题就被分解成了两个小一点的问题:计算左边部分的最小成本f[i][k-1]
和右边部分的最小成本f[k+1][j]
。而这次切割的成本是整个未切割前的木棍长度,即cuts[j+1] - cuts[i-1]
。- 选择最优解:我们需要在所有可能的第一次切割点
k
中选择一个使得f[i][k-1] + f[k+1][j] + (cuts[j+1] - cuts[i-1])
最小的方案。边界条件
- 如果
i > j
,这意味着没有需要切割的部分,所以成本为 0。计算过程
- 初始化:首先将所有的
f[i][j]
初始化为无穷大,除了那些i > j
的情况,它们的成本为 0。- 填充表:按照从小到大的顺序计算每个
f[i][j]
的值。对于每一个i
和j
,尝试所有可能的k
来更新f[i][j]
的值。- 最终答案:
f[1][m]
就是我们要找的最小总成本,其中m
是所有切割点的数量。例子
假设你有木棍长度为
n=7
,切割点为[1, 3, 4, 5]
。经过排序后,切割点加上两端点变为[0, 1, 3, 4, 5, 7]
。通过上述方法计算,你可以找到将这根木棍完全切开所需的最小成本。
题解
Java
import java.util.ArrayList;
import java.util.Collections;
class Solution {
public int minCost(int n, int[] cuts) {
// 第一步:将0和n加入作为区间边界
ArrayList<Integer> list = new ArrayList<>();
list.add(0);
list.add(n);
for (int num : cuts) {
list.add(num);
}
Collections.sort(list);
// 第二步:创建dp数组
int m = list.size();
int[][] dp = new int[m][m];
// 从后往前遍历i
for (int i = m - 1; i >= 0; --i) {
// 从前往后遍历j,且j至少比i大2
for (int j = i + 2; j < m; ++j) {
// 初始化dp[i][j]为最大值
dp[i][j] = Integer.MAX_VALUE;
// 枚举分割点k
for (int k = i + 1; k < j; k++) {
// 更新dp[i][j]的最小值
dp[i][j] = Math.min(dp[i][j],
dp[i][k] + dp[k][j] + list.get(j) - list.get(i));
}
}
}
// 返回从0到m-1的最小成本
return dp[0][m - 1];
}
}
思路
初始化列表:
- 将0和n加入到一个列表中,表示木棍的两端。
- 将所有的切割点加入到列表中。
- 对列表进行排序,确保切割点按顺序排列。
创建DP数组:
- 创建一个二维数组
dp
,大小为m x m
,其中m
是列表的长度。dp[i][j]
表示从第i
个切割点到第j
个切割点之间的最小切割成本。填充DP数组:
- 从后往前遍历
i
,确保子问题先于大问题被解决。- 从前往后遍历
j
,且j
至少比i
大2,确保中间有至少一个切割点。- 初始化
dp[i][j]
为最大值Integer.MAX_VALUE
。- 枚举中间的切割点
k
,计算并更新dp[i][j]
的最小值。返回结果:
- 最终返回
dp[0][m-1]
,即从0到n的最小切割成本。关键点
- 排序:确保切割点按顺序排列,方便后续处理。
- 动态规划:通过子问题的最优解来构建大问题的最优解。
- 状态转移方程:
dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k][j] + list.get(j) - list.get(i))
,其中list.get(j) - list.get(i)
表示当前切割的成本。
制作不易,您的关注与点赞是我最大的动力!