每日一题.切棍子的最小成本;动态规划的运用

本题出自LeetCode1547每日一题切棍子的最小成本,今天双十一,倒是剁起了棍子,虽然说标签是困难,但这道题肯定是没那么难的,因为很快就发现这是一道标准的动态规划或者用递归做


题目 

有一根长度为 n 个单位的木棍,棍上从 0 到 n 标记了若干位置。例如,长度为 6 的棍子可以标记如下:

给你一个整数数组 cuts ,其中 cuts[i] 表示你需要将棍子切开的位置。

你可以按顺序完成切割,也可以根据需要更改切割的顺序。

每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。

返回切棍子的 最小总成本 。

示例 1:

输入:n = 7, cuts = [1,3,4,5]
输出:16
解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:

第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。
而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。

示例 2:

输入:n = 9, cuts = [5,6,1,4,2]
输出:22
解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。

提示:

  • 2 <= n <= 10^6
  • 1 <= cuts.length <= min(n - 1, 100)
  • 1 <= cuts[i] <= n - 1
  • cuts 数组中的所有整数都 互不相同

解题思路

问题背景

想象你有一根很长的木棍,你需要在某些特定的位置将它切成几段。每次切割的成本等于你要切割的那部分木棍的长度。你的目标是以最低的成本完成所有切割。

解决方案

为了找到最低的成本,我们需要考虑的是如何选择切割的顺序。但是直接考虑所有可能的切割顺序是非常复杂的,所以我们采用了一种叫做“动态规划”的方法来简化问题。

动态规划的基本思想
  • 状态定义:我们用 f[i][j] 来表示从第 i 个切割点到第 j 个切割点之间(包括这两个点)完成所有切割所需的最小成本。
  • 状态转移:假设我们在 i 到 j 之间的某个点 k 做了第一次切割,那么这次切割会将木棍分成两部分,左边是从 i 到 k-1,右边是从 k+1 到 j。这时,我们的问题就被分解成了两个小一点的问题:计算左边部分的最小成本 f[i][k-1] 和右边部分的最小成本 f[k+1][j]。而这次切割的成本是整个未切割前的木棍长度,即 cuts[j+1] - cuts[i-1]
  • 选择最优解:我们需要在所有可能的第一次切割点 k 中选择一个使得 f[i][k-1] + f[k+1][j] + (cuts[j+1] - cuts[i-1]) 最小的方案。
边界条件
  • 如果 i > j,这意味着没有需要切割的部分,所以成本为 0。
计算过程
  1. 初始化:首先将所有的 f[i][j] 初始化为无穷大,除了那些 i > j 的情况,它们的成本为 0。
  2. 填充表:按照从小到大的顺序计算每个 f[i][j] 的值。对于每一个 i 和 j,尝试所有可能的 k 来更新 f[i][j] 的值。
  3. 最终答案f[1][m] 就是我们要找的最小总成本,其中 m 是所有切割点的数量。

例子

假设你有木棍长度为 n=7,切割点为 [1, 3, 4, 5]。经过排序后,切割点加上两端点变为 [0, 1, 3, 4, 5, 7]。通过上述方法计算,你可以找到将这根木棍完全切开所需的最小成本。


题解 

Java

import java.util.ArrayList;
import java.util.Collections;

class Solution {
    public int minCost(int n, int[] cuts) {
        // 第一步:将0和n加入作为区间边界
        ArrayList<Integer> list = new ArrayList<>();
        list.add(0);
        list.add(n);
        for (int num : cuts) {
            list.add(num);
        }
        Collections.sort(list);

        // 第二步:创建dp数组
        int m = list.size();
        int[][] dp = new int[m][m];

        // 从后往前遍历i
        for (int i = m - 1; i >= 0; --i) {
            // 从前往后遍历j,且j至少比i大2
            for (int j = i + 2; j < m; ++j) {
                // 初始化dp[i][j]为最大值
                dp[i][j] = Integer.MAX_VALUE;

                // 枚举分割点k
                for (int k = i + 1; k < j; k++) {
                    // 更新dp[i][j]的最小值
                    dp[i][j] = Math.min(dp[i][j], 
                        dp[i][k] + dp[k][j] + list.get(j) - list.get(i));
                }
            }
        }

        // 返回从0到m-1的最小成本
        return dp[0][m - 1];
    }
}
思路 
  1. 初始化列表

    • 将0和n加入到一个列表中,表示木棍的两端。
    • 将所有的切割点加入到列表中。
    • 对列表进行排序,确保切割点按顺序排列。
  2. 创建DP数组

    • 创建一个二维数组 dp,大小为 m x m,其中 m 是列表的长度。
    • dp[i][j] 表示从第 i 个切割点到第 j 个切割点之间的最小切割成本。
  3. 填充DP数组

    • 从后往前遍历 i,确保子问题先于大问题被解决。
    • 从前往后遍历 j,且 j 至少比 i 大2,确保中间有至少一个切割点。
    • 初始化 dp[i][j] 为最大值 Integer.MAX_VALUE
    • 枚举中间的切割点 k,计算并更新 dp[i][j] 的最小值。
  4. 返回结果

    • 最终返回 dp[0][m-1],即从0到n的最小切割成本。

关键点

  • 排序:确保切割点按顺序排列,方便后续处理。
  • 动态规划:通过子问题的最优解来构建大问题的最优解。
  • 状态转移方程dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k][j] + list.get(j) - list.get(i)),其中 list.get(j) - list.get(i) 表示当前切割的成本。

制作不易,您的关注与点赞是我最大的动力! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值