【每天一点Pytorch】用 gather 分 batch 取 tensor 维度

目标需求

我有一个维度是 [512, 20, 128] 的tensor,我希望从512的batch里,每次按照[20] 这一维给定索引,得到一个128维的向量,然后遍历整个batch,最终得到 [512, 128] 的tensor。

如果用循环来实现就很简单:

data = torch.rand([512, 20, 128])   # (batch, idx, embd)
index = torch.randint(20, (512, ))  # (batch,)

for i in range(512):
    tmp = data[i].index_select(0, index[i])
    try:
        out = torch.cat((out, tmp), dim=0)
    except:
        out = tmp

print(out.shape) # [512, 128]

如果不用循环来实现呢?

import torch

data = torch.rand([512, 20, 128])   # (batch, idx, embd)
index = torch.randint(20, (512, ))  # (batch,)

index_new = index[..., None, None].expand(-1, -1, data.shape[2])
out = torch.gather(data, 1, index_new).squeeze()

print(out.shape)

解读代码,index_select很方便,但只能取出一维。题目是先要按512维的顺序取出[20, 128],然后根据第一个给定索引取出一个128维向量,接着取出第二个[20, 128],然后根据第二个索引取出一个128维向量,最终得到一个[512, 128]维tensor。

借助gather的话,需要保证data和index的维度一致,因此我们需要对给定的index进行扩充,同时还要对第一维以外的维度进行复制扩充。

### 回答1: 好的,以下是使用PyTorch实现SparseAttention的代码: ``` import torch import torch.nn.functional as F class SparseAttention(torch.nn.Module): def __init__(self, num_heads, d_model, dropout=0.1): super().__init__() self.num_heads = num_heads self.d_model = d_model self.dropout = torch.nn.Dropout(dropout) self.q_linear = torch.nn.Linear(d_model, d_model, bias=False) self.k_linear = torch.nn.Linear(d_model, d_model, bias=False) self.v_linear = torch.nn.Linear(d_model, d_model, bias=False) self.out_linear = torch.nn.Linear(d_model, d_model, bias=False) def forward(self, q, k, v, mask=None): # q, k, and v are of shape (batch_size, seq_len, d_model) # mask is of shape (batch_size, seq_len) batch_size = q.size(0) seq_len = q.size(1) # Linear projection for the queries, keys, and values q_proj = self.q_linear(q).view(batch_size, seq_len, self.num_heads, self.d_model // self.num_heads).transpose(1, 2) k_proj = self.k_linear(k).view(batch_size, seq_len, self.num_heads, self.d_model // self.num_heads).transpose(1, 2) v_proj = self.v_linear(v).view(batch_size, seq_len, self.num_heads, self.d_model // self.num_heads).transpose(1, 2) # Compute the attention scores attn_scores = torch.matmul(q_proj, k_proj.transpose(-2, -1)) / (self.d_model // self.num_heads)**0.5 # Apply the mask if mask is not None: attn_scores = attn_scores.masked_fill(mask.unsqueeze(1).unsqueeze(2) == 0, float('-inf')) # Apply the softmax function attn_probs = F.softmax(attn_scores, dim=-1) # Apply the dropout attn_probs = self.dropout(attn_probs) # Compute the weighted sum of the values attn_output = torch.matmul(attn_probs, v_proj) # Concatenate the heads and apply the output projection attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.num_heads * (self.d_model // self.num_heads)) attn_output = self.out_linear(attn_output) return attn_output ``` 在这个实现中,我们先使用线性投影将输入的queries、keys和values的维度变为d_model,然后将它们别拆成num_heads个头,每个头的维度为d_model/num_heads。接着,我们计算每个头的attention得,然后将它们拼接在一起,再通过一个输出投影层获得最终的attention输出。如果有mask,则在计算attention得时将mask的位置设置为负无穷,以忽略这些位置的信息。最后,在softmax和输出投影层之前应用dropout以防止过拟合。 ### 回答2: SparseAttention是一种基于稀疏注意力机制的模型,它的PyTorch代码如下所示: ```python import torch import torch.nn as nn import torch.nn.functional as F class SparseAttention(nn.Module): def __init__(self, input_dim, output_dim, sparsity): super(SparseAttention, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.sparsity = sparsity # 初始化参数 self.weights = nn.Parameter(torch.Tensor(input_dim, output_dim)) self.bias = nn.Parameter(torch.Tensor(output_dim)) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weights) nn.init.zeros_(self.bias) def forward(self, x): # 特征投影 projected = torch.matmul(x, self.weights) # 计算注意力数 attention_scores = F.softmax(projected, dim=-1) # 获取稀疏的注意力数 num_sparse = int(self.sparsity * self.output_dim) _, top_indices = torch.topk(attention_scores, num_sparse, dim=-1) sparse_attention_scores = torch.zeros_like(attention_scores) sparse_attention_scores.scatter_(-1, top_indices, attention_scores.gather(-1, top_indices)) # 加权求和 weighted = torch.matmul(sparse_attention_scores, projected.transpose(-1, -2)) # 添加偏置 output = weighted + self.bias return output ``` 以上的代码实现了SparseAttention模型,其中`input_dim`表示输入的特征维度,`output_dim`表示输出的特征维度,`sparsity`表示稀疏比例。在前向传播过程中,首先对输入特征进行线性投影,然后计算所有注意力数,并根据稀疏比例选择出topk的注意力数。接着,将稀疏的注意力数与投影特征进行加权求和,并添加偏置。最终得到输出的特征。注意,上述实现仅供参考,具体使用时需要根据实际情况进行调整。 ### 回答3: SparseAttention是一种特殊类型的注意力机制,用于处理稀疏输入数据。在PyTorch中,我们可以使用以下代码实现SparseAttention。 首先,我们需要导入PyTorch库和其他相关库: ```python import torch import torch.nn as nn ``` 然后,我们可以定义SparseAttention类,并继承PyTorch的nn.Module类: ```python class SparseAttention(nn.Module): def __init__(self, input_dim, hidden_dim): super(SparseAttention, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.fc = nn.Linear(input_dim, hidden_dim) def forward(self, input): # 线性变换 hidden = self.fc(input) # 计算注意力权重 attn_weights = torch.softmax(hidden, dim=-1) # 计算加权平均向量 weighted_input = torch.sum(input * attn_weights.unsqueeze(-1), dim=-2) return weighted_input ``` 我们在SparseAttention类的构造函数中定义了输入维度(input_dim)和隐藏维度(hidden_dim)。在forward方法中,我们首先对输入数据进行线性变换,然后使用softmax函数计算注意力权重,并将输入与注意力权重相乘。最后,我们通过对注意力加权输入进行求和操作,得到加权平均向量。 接下来,我们可以创建SparseAttention的实例,并将输入数据传递给它: ```python input_dim = 10 hidden_dim = 5 input = torch.randn(3, 5, input_dim) # 生成3个输入数据,每个数据包含5个特征 sparse_attention = SparseAttention(input_dim, hidden_dim) output = sparse_attention(input) print(output) ``` 在这个例子中,我们创建了一个大小为3x5xinput_dim的输入数据。然后,我们创建了一个SparseAttention实例并将输入数据传递给它。最后,我们打印输出结果output。 这就是用PyTorch实现SparseAttention的代码。希望对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yzy_1996

买杯咖啡,再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值