点分

71 篇文章 0 订阅
54 篇文章 0 订阅

作用

在树上实现,通过分治的方法,使原来需要复杂度为n^2的做法变为n*logn.

实现方法

首先找到树的重心,然后以重心为根,考虑需要用到根的部分,之后去掉根节点,将原来子树分成多个小于原来大小的一半的多棵子树,再用上述方法反复处理,不难证明复杂度为n*logn.
因此点分的核心代码就是统计每个点的子树大小和找到根节点.

void getsz(int now,int last)
{
    int p,q;
    size[now]=1;
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(vis[bn[p].to]||bn[p].to==last) continue;
        getsz(bn[p].to,now);
        size[now]+=size[bn[p].to];
    }
}

int getrt(int now,int last,int tot)
{
    int p,q;
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(vis[bn[p].to]||bn[p].to==last||size[bn[p].to]*2<tot) continue;
        return getrt(bn[p].to,now,tot);
    }
    return now;
}

例题poj 1741 Tree

给出一棵有边权树,问最短距离小于等于k的点对有几对.

做法

用点分的方法,每次考虑通过根节点的路径长度,用递归求出每个点到根节点的距离,排序之后可以用O(n)的复杂度求出有几个点对符合,再用同样的方法减掉在同一棵子树中的点
对(在统计那一棵子树时会重复计算).

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10010
#define INF 0x3f3f3f3f
using namespace std;

int n,k,first[N],bb,size[N],ans,deep[N],de[N],dd;
bool vis[N];
struct bn
{
    int to,next,quan;
} bn[N<<1];

inline void add(int u,int v,int w)
{
    bb++;
    bn[bb].to=v;
    bn[bb].next=first[u];
    bn[bb].quan=w;
    first[u]=bb;
}

void getsz(int now,int last)
{
    int p,q;
    size[now]=1;
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(vis[bn[p].to]||bn[p].to==last) continue;
        getsz(bn[p].to,now);
        size[now]+=size[bn[p].to];
    }
}

int getrt(int now,int last,int tot)
{
    int p,q;
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(vis[bn[p].to]||bn[p].to==last||size[bn[p].to]*2<tot) continue;
        return getrt(bn[p].to,now,tot);
    }
    return now;
}

void gd(int now,int last)
{
    int p,q;
    de[++dd]=deep[now];
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(bn[p].to==last||vis[bn[p].to]) continue;
        deep[bn[p].to]=deep[now]+bn[p].quan;
        gd(bn[p].to,now);
    }
}

inline int js(int now,int cz)
{
    int i,j,res=0;
    dd=0;
    deep[now]=cz;
    gd(now,-1);
    sort(de+1,de+dd+1);
    for(i=1,j=dd; i<j;)
    {
        de[i]+de[j]<=k?res+=j-i,i++:j--;
    }
    return res;
}

void work(int now)
{
    int p,q;
    ans+=js(now,0);
    vis[now]=1;
    for(p=first[now]; p!=-1; p=bn[p].next)
    {
        if(vis[bn[p].to]) continue;
        ans-=js(bn[p].to,bn[p].quan);
        getsz(bn[p].to,-1);
        work(getrt(bn[p].to,-1,size[bn[p].to]));
    }
}

int main()
{
    int i,j,p,q,o;
    for(;;)
    {
        scanf("%d%d",&n,&k);
        if(!n&&!k) return 0;
        bb=ans=0;
        memset(first,-1,sizeof(first));
        memset(vis,0,sizeof(vis));
        for(i=1; i<n; i++)
        {
            scanf("%d%d%d",&p,&q,&o);
            add(p,q,o),add(q,p,o);
        }
        getsz(1,-1);
        work(getrt(1,-1,n));
        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值