题面
明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!
我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。
他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等
当然,他又有一些稀奇古怪的限制:
每种食物的限制如下:
承德汉堡:偶数个
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃多:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆片炒肉:不超过一个。
面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。
Input
输入样例1
1
输出样例1
1
输入样例2
5
输出样例2
35
数据范围
对于40%的数据,1<=N<=100000;
对于所有数据,1<=n<=10^500;
做法
首先n的范围很吓人,可以初步确定复杂度为O(1)或O(log)了,因此这题多半要推通项公式.
正确做法是用生成函数,原题可以转化为求(1+x^2+x^4+x^6…..) * (1+x) * (1+x+x^2) * (x+x^3+x^5……) * (1+x^4+x^8+x^12…..) * (1+x+x^2+x^3) * (1+x) * (1+x^3+x^6+x^9….)展开后x^n项的系数(应该很好理解),然后再各种公式化简,就可以得到x*(1/(1-x))^4.
可以发现(1+x+x^2+x^3……)=1/(1-x),因此原式可以转化为:x*(1+x+x^2+x^3……)^4.
这样这道题目就可以看作在1~n中选出四个数使它们的和为n-1.
然后再用隔板法求出通项公式为C(n+2,3),也就是n * (n+1) * (n+2)/6.
最后O(1)求解即可.
代码
#include<iostream>
#include<cstdio>
#define ll long long
#define M 10007
using namespace std;
ll ans;
string a;
int main()
{
ll i,j;
cin>>a;
for(i=0;i<a.size();i++)
{
ans=ans*10+a[i]-48;
ans%=M;
}
cout<<ans*(ans+1)*(ans+2)/6%M;
}