题面
题意
给出n个数,有m次操作,每次操作给出两个数,会有50%的概率交换这两个数,问m次操作后逆序对的期望数量。
做法
我觉得这题的难点主要在于dp状态的设计。
可以记
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示第i个位置上的数比第j个位置上的数大的概率。
这样开始
d
p
[
i
]
[
j
]
=
(
n
u
m
[
i
]
>
n
u
m
[
j
]
)
dp[i][j]=(num[i]>num[j])
dp[i][j]=(num[i]>num[j])
之后当交换p,q上的数后,
d
p
[
i
]
[
p
]
=
d
p
[
i
]
[
q
]
=
(
d
p
[
i
]
[
p
]
+
d
p
[
i
]
[
q
]
)
/
2
dp[i][p]=dp[i][q]=(dp[i][p]+dp[i][q])/2
dp[i][p]=dp[i][q]=(dp[i][p]+dp[i][q])/2
而
d
p
[
p
]
[
i
]
=
d
p
[
q
]
[
i
]
=
1
−
d
p
[
p
]
[
i
]
dp[p][i]=dp[q][i]=1-dp[p][i]
dp[p][i]=dp[q][i]=1−dp[p][i],
d
p
[
p
]
[
q
]
=
d
p
[
q
]
[
p
]
=
0.5
dp[p][q]=dp[q][p]=0.5
dp[p][q]=dp[q][p]=0.5
最后直接根据定义统计逆序对数量即可
∑
i
<
j
d
p
[
i
]
[
j
]
\sum_{i<j}dp[i][j]
∑i<jdp[i][j]
代码
#include<bits/stdc++.h>
#define db double
#define N 1010
using namespace std;
int n,m,num[N];
db dp[N][N],ans;
int main()
{
int i,j,p,q;
cin>>n>>m;
for(i=1;i<=n;i++) scanf("%d",&num[i]);
for(i=1;i<=n;i++) for(j=1;j<=n;j++) dp[i][j]=(num[i]>num[j]);
for(i=1;i<=m;i++)
{
scanf("%d%d",&p,&q);
for(j=1;j<=n;j++)
{
dp[j][p]=dp[j][q]=(dp[j][p]+dp[j][q])*0.5;
dp[p][j]=dp[q][j]=1.0-dp[j][p];
}
dp[p][q]=dp[q][p]=0.5;
}
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
ans+=dp[i][j];
}
}
printf("%.8f",ans);
}