每逢节日送礼,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你。

本文通过Python爬虫获取京东口红数据,进行了价格区间、销量分布、热销口红和店铺分析,展示了价格与销量的关系,强调了数据预处理在数据分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、案例说明

1、案例背景

节日快到了,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你。

我们爬取了京东商城口红近 4000 条口红商品信息,并对这些口红数据进行分析,让大家买口红给女朋友时有个选择的参考,从如下几个方面去分析:

1、哪些价格区间的口红卖的最好?
2、口红销量分布情况。
3、销量前10的口红有哪些?
4、销量前10的店铺。
5、商品价格和销量的关系。

2、任务说明

通过 Python 爬虫爬取了京东上所有口红铺的数据集 jd_data.csv。

我们希望通过该数据集,针对不同的口红品牌和店铺进行统计与分析,从而能够解开我们上述疑问。

3、数据字段的说明

字段含义图:

图片

二、数据预处理

数据清洗

1、首先从csv文件中导入数据

import pandas as pd 
import matplotlib.pyplot as plt 

#读取数据
dataframe = pd.read_csv('jd_data.csv',encoding = 'gb18030')#这里不能使用utf-8
print(dataframe.shape)

查看下有多少行、列数据:
(3816, 6)
共有3816行,6列(上面有这六个字段说明)

2、缺失值处理

data = dataframe.dropna(how='any')
data.head()
print(data.shape)

(3610, 6)
从这里可以看出还是有些缺失值的

对于缺失值的处理主要有两种方法:

删除

填充:分为均值、中位数、众数、附近值进行填充,还有牛顿差值法等等。
这里偷一下懒,使用比较简便的删除的方式处理缺失值,毕竟缺失的不是很多。

# inplace=True表示原地修改数据集  
data.dropna(axis=0, inplace=True)   
  
# 对删除后缺失值后的数据集,再次进行缺失值统计  
data.isnull().sum(axis=1)   

数据转换

1、将评论的+和万字修改

def dealComment(comm_colum):
    num = str(comm_colum).split('+')[0]
    if '万' in num:
        if '.' in num :
            num = num.replace('.','').replace('万','000')
        else:
            num = num.replace('.','').replace('万','0000')
    return num
dataframe['comment'] = dataframe['comment'].apply(lambda x: dealComment_num(x))
#转换成int类型
dataframe['comment'] = dataframe.comment.astype('int') 
data = dataframe.drop('comment',axis = 1)
print(data.head(10))

经过处理完后的数据:

图片

数据预处理是数据分析的一项重要任务,能否得到准确的数据分析结果离不开数据预处理,下面我们开始对口红数据进行分析吧!

三、数据分析

京东上面商品没有销量这一信息,我们姑且将评论数当成是销量。

本次项目中取用了 name、price、comment、shop_name 、shop_type 这几个字段的信息。

分别是商品标题名称、价格、评论数、店铺名、店铺类型来进行分析。

1、口红价格分布区间

import pandas as pd 
import matplotlib.pyplot as plt

#读取数据
data = pd.read_csv('jd_data.csv',encoding = 'gb18030')

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize=(10,8))
price = data[data['price'] < 1000]
plt.hist(price['price'], bins=10, color='brown')
plt.xlabel('价格')
plt.ylabel('商品数量')
plt.title('价格商品分布')
plt.show()

结果如下:

图片

通过上图,可以很清楚看到:

  • 口红的价格绝大多数在0-500元的区间之内,但是也有口红的售价达到了1000元,哈哈努力挣钱吧。
  • 其中200-300元价位的数量非常的高,超过了1200,而且价格超过300元的有明显的减少趋势,哈哈价格才是王道。

2、销量分布情况

由于没有爬取到销量信息,所以将评论数当成销量

#销量分析
sale_num = data[data['comment'] > 100]
plt.figure(figsize=(10,8))
#print(len(sale_num)/len(data))  #查看下大致的区间分布
plt.hist(sale_num['comment'], bins=20, color='blue')
plt.xlabel('销量')
plt.ylabel('数量')
plt.title('销量情况')
plt.show()

结果如下:

图片

通过直方图我们可以看到:

  • 销售量基本是在20万以内。
  • 销售量在10万以内的占了绝大多数
  • 还有极个别的店铺销量竟然超过了100万

3、销售前10的口红

#销售前10的口红
#抽取商品标题的简略信息
def get_title(item):
    title = item.split(' ')[0]
    return title

data['small_name'] = data['name'].apply(lambda x: get_title(x)) 
data1 = data.drop('name',axis = 1)
top10Lipstick = data1.sort_values('comment',ascending=False)
print(top10Lipstick.head(10))
title = top10Lipstick['small_name'][:10]
sale_num = top10Lipstick['comment'][:10]
plt.figure(figsize=(10,8),dpi = 80) 
plt.bar(range(10),sale_num,width=0.6,color='red')
plt.xticks(range(10),title,rotation=45)
#plt.ylim((9,9.7))   #设置y轴坐标
plt.ylabel('数量') 
plt.xlabel('标题')  
plt.title('销量前10的糖果')
for x,y in enumerate(list(sale_num)):   
    plt.text(x,float(y)+0.01,y,ha='center')

结果如下:

图片

图片

可以发现,排名前三位的是:

  • 京东国际魅可(MAC)经典唇膏 子弹头口红3g Chili 小辣椒色

商品图片

图片

  • 【520礼物】中国风口红套装礼盒女颐和园同款唇膏唇釉学生非小样彩妆 口红套装(6支)

商品图片

图片

  • 【520礼物】迪奥(Dior)烈艳蓝金唇膏-哑光999# 3.5g 传奇红(口红 正红色 传奇红 赠精美礼盒)

商品图片

图片

4、销量前10的店铺

分析完销量前10的商品后,我们再来看下销量前10的店铺:

代码如下:

#销量前10的店铺
top_shop = data.groupby('shop_name')['comment'].sum().sort_values(ascending=False)[:10]
print(top_shop.head(10))

plt.figure(figsize=(10,8),dpi = 80)
top_shop.plot(kind = 'bar',color='red',width= 0.6)
plt.ylabel('数量')
plt.xlabel('店铺名')  
plt.title('销量前10的店铺') 
plt.xticks(rotation=45)
for x,y in enumerate(list(top_shop)): 
    plt.text(x,float(y)+0.1,y,ha='center')
plt.show()

结果如下:

图片

由上图可以看到:

  • MAC魅可海外自营专区 占据第一名,达 1365308 的销售量,而且基本前10的店铺销量都在5万以上。
  • 前三名都基本达到了130多万
  • 前10名中有5个是京东自营

5、商品价格和销量的关系

我们采用散点图的方式,看看价格和销量的分布关系

plt.figure(figsize=(10,8))
plt.scatter(data['price'],data['comment'], color='blue')
plt.xlabel('价格')
plt.ylabel('销量')
plt.title('价格、销量的散点分布')
plt.show()

结果如下:

图片

可以看出:

随着价格的升高销量会减小,而且价格在400内,对销量的影响不大,证明绝大多数人的口红消费区间在0-400元之间,但是最贵的竟然达到了近1700元,哈哈,贫穷限制了我的想象。

四、总结

经过这次小小的数据分析,还是学到了许多的。作为一名小白,还有许多要学习:

  • 数据清洗,它是能分析出正确结果的保证;
  • 如何挖掘数据不同维度间的联系等;

不足:本次数据分析还有许多需要完善的地方:

  • 比如分析不同类型的店铺占比店铺;
  • 不同类型的店铺之间的销量对比;
  • 由于本次没有爬取评论数据,没有做情感分析;

数据分析之路还很漫长,加油!

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
Python全套学习资料

在这里插入图片描述

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

5️⃣Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值