- 博客(8)
- 收藏
- 关注
原创 机器学习—PCA
降维: PCA通过投影数据到新的坐标系,实现了数据的降维,保留了大部分原始数据的信息。去相关性: PCA通过变换数据,去除了数据在新坐标轴上的相关性,有助于消除冗余信息。简化模型: 通过减少特征数量,PCA可以简化模型,提高模型的泛化能力,避免过拟合。特征提取: PCA不仅降维,还能提取数据中的关键特征,帮助理解数据的结构和模式。
2024-06-22 18:43:34 1685
原创 机器学习—svm
优点:高维空间的高效处理: SVM在高维空间中的表现优秀,适用于处理具有大量特征的数据,比如文本分类问题。最大间隔分类: SVM通过寻找最大间隔超平面,使得模型更具泛化性,对新样本的分类效果较好,具有较高的鲁棒性。核技巧的应用: SVM利用核技巧可以处理非线性问题,将低维的非线性可分问题映射到高维的线性可分问题,从而更好地解决各类复杂问题。小样本数据的处理: SVM在小样本数据集上的表现相对较好,对于数据量较小的情况也能产生较好的分类效果。
2024-06-11 14:24:16 685 1
原创 机器学习—逻辑回归
Logistic回归是一种统计学习方法,用于建模二分类问题。它通过一个线性方程的组合,将输入特征映射到S形函数(sigmoid函数)上,得到一个0到1之间的概率值。这个概率值可以用于判断样本属于类别1的可能性。1. 数据收集:收集包含特征和标签的数据集。特征是影响预测的变量,标签是我们想要预测的目标变量。2. 数据预处理:对数据进行预处理,包括处理缺失值、处理异常值、特征缩放等。确保数据的质量对模型训练至关重要。3. 特征工程:进行特征工程,选择合适的特征,处理高维度数据,解决多重共线性等问题。
2024-05-28 04:23:39 1605
原创 机器学习—贝叶斯算法
朴素贝叶斯算法源于贝叶斯定理,由于其简单而有效的特性,成为机器学习中常用的分类算法之一。其名中的“朴素”表示该算法对于特征之间的条件独立性做了朴素的假设,即假设给定类别的情况下,特征之间是相互独立的。尽管这一假设在现实数据中并不总是成立,但朴素贝叶斯的高效性使其在实际应用中表现出色。
2024-05-14 14:27:13 840 1
原创 机器学习—决策树
决策树是一种基于树形结构的机器学习模型,用于分类或预测数据。它具有可解释性强、处理非线性关系、对缺失值不敏感、同时处理分类和回归问题、自动特征选择以及可扩展性等优点。然而,决策树也存在容易过拟合、不稳定性、处理不平衡数据困难、局部最优解、特征连续性处理不足以及泛化能力相对较弱等缺点。ID3算法和CART算法是两种常见的决策树构建算法,它们分别基于信息增益和基尼不纯度来选择最佳特征进行分裂。
2024-04-30 13:10:34 823
原创 机器学习——knn算法
k-近邻算法是一种用于分类和回归的非参数方法。在分类问题中,它通过测量不同特征之间的距离来对数据进行分类。k-近邻算法不同于传统的基于参数模型的算法,它不会对数据进行假设,而是直接利用数据之间的相似性进行分类。
2024-04-02 20:03:27 347 1
原创 Anacondn安装教程
大家可以自行选择官网安装或者是前往清华大学开源软件镜像站进行安装,这里我选择的是在清华大学开源软件镜像站中进行安装。3.检查有没有写入到系统环境变量中。选择合适自己电脑的版本点击下载。5.检验是否配置成功。
2024-03-19 17:37:40 211
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人