目录
使用urllib
在python2中有urllib和urllib2,而在python3中只有urllib
urllib是python中内置的http请求库。它包含了4个模块。
- requests:最基本的http请求模块,可以用来模拟发送请求。
- error:异常处理模块,如果请求错误,我们可以捕捉这些异常。
- parse:一个工具模块,提供了许多URL处理方法,如拆分、解析、合并等。
- robotparse:识别网站的robots.txt文件。然后判断哪些网站可以爬,哪些网站不可以爬。
发送请求
1.uropen()
urllib.request模块提供了最基本的构造HTTP请求的方法
import urllib.request
response=urllib.request.urlopen('https://www.python.org')
print(response.read().decode('utf-8'))
print(response.status)
print(response.getheaders())
print(response.getheader('Server'))
使用read()方法可以得到返回的网页内容
调用status属性可以得到返回结果的状态码,200代表请求成功,404代表网页未找到
使用getheader方法并传递一个参数获得了响应头中的Server值
除了urlopen函数的第一个参数可以传递URL外,还可以传递其他内容,如data(数据)、timeout(超过时间)等。
timeout参数
timeout参数用于设置超时时间,单位为秒,意思是如果请求超过了设置的时间,还没有得到响应,就会抛出异常。若不指定该参数,就会使用全局默认参数
高级用法
代理
from urllib.error import URLError
from urllib.request import ProxyHandler, build_opener
proxy_handler = ProxyHandler({
'http':'http://127.0.0.1:9743',
'https':'https://127.0.0.1:9743'
})
opener = build_opener(proxy_handler)
try:
response = opener.open('https://www.baidu.com')
print(response.read() .decode('utf-8'))
except URLError as e:
print(e .reason)
Cookies
import http.cookiejar, urllib.request
cookie = http.cookiejar.CookieJar()
handler = urllib.request.HTTPCookieProcessor(cookie)
opener = urllib.request.build_opener(handler)
response = opener.open ('http://www.baidu.com')
for item in cookie:
print(item.name + "=" + item.value)
处理异常
URLError
它具备一个属性reason,即返回错误的原因
例如:
from urllib import request,error
try:
response=request.urlopen('https://cuiqingcai.com/index.htm')
except error.URLError as e:
print(e.reason)
输入一个不存在的网页,所以报错了
HTTPRrror
它是URLError的子类,专门用来处理HTTP请求错误,比如认证失败等等。它有4个属性。
code:返回HTTP状态码
reason:返回错误原因
headers:返回请求头
解析链接
urlparse
用于实现URL的识别和分段
from urllib.parse import urlparse
result=urlparse('https://baidu.com/index.html;use?id=5#comment')
print(type(result), result)
urlunparse
urlsplit
urlunsplit
urljoin
urlencode
。。。
分析Robots协议
利用urllib的robotparser模块,实现网站Robots协议的分析。
Robots协议也称为爬虫协议,全名叫网络爬虫排除标准协议。一般放到该站点目录的robots.txt文件中。
如图为百度的robots协议
from urllib. robotparser import RobotFileParser
rp=RobotFileParser()
rp.set_url('http://www.jianshu.com/robots.txt')
rp.read()
print(rp.can_fetch('*',"http://www.jianshu.com/p/67554025d7d"))
print(rp.can_fetch('*',"http://ww.jianshu.com/search?q-python&page=1&type=collections"))
先创建RobotFileParser对象,然后通过set_url方法设置了robot.txt的链接
使用requests
安装Requests
pip install requests
获取响应内容
import requests
r=requests.get('http://www.santostang.com/')
print("文件编码:",r.encoding)
print("响应状态码:",r.status_code)
print("字符串的响应体:",r.text)
这样就返回了一个名为 r
的response响应对象,里面存储了服务器响应的内容。
- r.text是服务器响应的内容,会自动根据响应头部的字符编码进行解码
- r.encoding是服务器内容使用的文本编码
- r.status_code 用于检测响应的状态码,如果返回200,表示请求成功;如果返回4xx,表示客户端错误,返回5xx,表示服务器错误响应。可以使用r.status_code来检测请求是否正确响应。
- r.content是字节方式的响应体,会自动节码gzip和deflate编码的响应数据
- r.json是Requests内置的JSON解码器
定制Requests
传递URL参数
为了请求特定的参数,我们通常在URL的查询字符中加入某些数据,如果我们自己构建URL,一般数据会跟在一个问号后面,如http://httpbin.org/get?key1=value1&key2=value2
在Requests中,可以把这些参数放在字典李,用params构建至URL里。例如key1=value1,key2=value2构建至http://httpbin.org/get里
import requests
key_dict={'key1':'value1','key2':'value2'}
r=requests.get('http://httpbin.org/get',params=key_dict)
print("URL已经正确编码:",r.url)
print("字符串的响应体:\n",r.text)
定制请求头
请求头Headers提供了关于请求、响应或其他发送实体的信息。对于爬虫而言,请求头十分重要,有的时候,如果没有请求头或者请求头和实际网页不一致,就可能无法返回正确的结果。
右键点击检查
点击Network,在左侧的资源栏找到需要请求的网页(http://www.santostang.com/
),单击需要请求的网页,在Headers中可以看到 Requests 中 Headers 的详细信息
提取请求头中重要的信息,把代码改成:
import requests
headers={
'Host': 'www.santostang.com',
'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36'
}
r=requests.get('http://www.santostang.com/',headers=headers)
print("响应状态码:",r.status_code)
**注意:**这里的Host字段的意思主要是,指明http报文的方向,访问的地点
发送POST参数
除了GET请求外,有时还需要发送一些编码为表单形式的数据,如在登陆的时候请求就是POST,因为如果使用GET请求,密码就显示在URL里,这是非常不安全的。
import requests
key_dict={'key1':'value1','key2':'value2'}
r=requests.post('http://httpbin.org/post',data=key_dict)
print("URL已经正确编码:",r.url)
print("字符串的响应体:\n",r.text)
这样的话,表单不存在于URL中,但又使用用于了请求。
超时
有时爬虫遇到服务器长时间不反悔,这时爬虫程序就会一直等待,造成爬虫没有顺利执行。
因此可以使用Requests
中的timeout参数设置特定的表述结束后停止等待响应。意思是:服务器在timeout秒后没有应答,就返回异常。
我们把这个秒数设置成0.001,看看会抛出什么异常。
import requests
url='http://www.santostang.com/'
r=requests.get(url,timeout=0.001)
正则表达式
search
import re
connect='''hello 123 456'''
result=re.search('hello(.*?)3',connect).group(1)
print(result)
12
使用search方法会返回第1个满足要求的字符串,一旦找到满足要求的字符串就会停止查找。
我们可以使用group这个方法来获取里面的值。
group里面的参数为几,就返回第几个括号里的值。
findall
import re
connect='''hello 123 456'''
result=re.findall('hello(.*?)3',connect)
print(result)
[' 12']
与search方法不同,使用findall方法会返回一个列表。
其他
贪婪和非贪婪
贪婪模式:.*
非贪婪模式:.*?
贪婪模式会尽可能 的匹配多个字符,而非贪婪模式就是尽可能的匹配少的字符
修饰符
例如,再匹配带有换行符的字符串中,如果我们使用原先的正则匹配就会出现错误,所以我们这时候就要使用修饰符。
在网页中,我们较为常见的是re.S
和re.I
我们先看一段代码:
import re
connect='''hello 1
23 456'''
result=re.findall('hello(.*?)3',connect,re.S)
print(result)
[' 1\n2']
在findall函数参数里,我们加入re.S的参数,可以使得正则匹配忽略换行符
正则表达式提取技巧
不需要compile
大多数时候,我们不需要使用compile方法,因为在使用findall
方法时,findall方法中默认调用了_compile犯法,再调用findall方法。
先抓大再抓小
一些有效内容和无效内容混在一起时。
我们可以使用先抓大再抓小的技巧,重复匹配。
实战
Requests爬虫实践:TOP250电影数据
网站分析
- 使用检查功能查看该网页的请求头,提取重要的请求头信息
headers={
'Host': 'movie.douban.com',
'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36'
}
我们观察可以发现,一页有25个电影的信息,如果想要获取250个电影信息,我们需要获取总共10页
这时候我们会发现,点击第一页的时候网址为https://movie.douban.com/top250?start=0
点击第二页网址就变成了
https://movie.douban.com/top250?start=25
根据这个,我们就很好理解了,每增加一页,网页的start参数就增加25
这里使用了xpath的方法对网页数据进行筛选
import requests
import lxml.html
headers={
'Host': 'movie.douban.com',
'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36'
}
num=0
for i in range(10):
#拼接每一页的网址
url='https://movie.douban.com/top250?start='+str(i*25)
#获取网页源码
html=requests.get(url,headers=headers,timeout=5).text
#构建网页对象
selector=lxml.html.fromstring(html)
#使用xpath获取电影名称
name_list=selector.xpath('//*[@id="content"]/div/div[1]/ol/li/div/div[2]/div[1]/a/span[1]/text()')
#获取评分
score_list=selector.xpath('//*[@id="content"]/div/div[1]/ol//div/div[2]/div[2]/div/span[2]/text()')
#获取电影名句
FamousSentences_list=selector.xpath('//*[@id="content"]/div/div[1]/ol/li/div/div[2]/div[2]/p[2]/span/text()')
#print("第",str(i+1),"页名句数量:",len(FamousSentences_list))
#打印每页的电影信息
for j in range(25):
num+=1
print("top",str(num),":",name_list[j]," 评分:",score_list[j])
#print("top",str(num),":",name_list[j]," 评分:",score_list[j]," ",FamousSentences_list[j])
注意:对电影的经典名句进行获取时,发现有部分电影没有经典名句,这样就会出现下标越界的情况