Table Store(OTS) Writer
更新时间:2020-06-17 17:37:14
本页目录
本文为您介绍Table Store(OTS) Writer支持的数据类型、写入方式、字段映射和数据源等参数及配置示例。
表格存储(Table Store)是构建在阿里云飞天分布式系统之上的NoSQL数据库服务,提供海量结构化数据的存储和实时访问。Table Store以实例和表的形式组织数据,通过数据分片和负载均衡技术,实现规模上的无缝扩展。
Table Store Writer通过Table Store官方Java SDK连接到Table Store服务端,并通过SDK写入Table Store服务端 。Table Store Writer本身对于写入过程进行诸多优化,包括写入超时重试、异常写入重试、批量提交等功能。
目前Table Store Writer支持所有Table Store类型,其针对Table Store类型的转换列表,如下所示。
类型分类 | Table Store数据类型 |
---|---|
整数类 | INTEGER |
浮点类 | DOUBLE |
字符串类 | STRING |
布尔类 | BOOLEAN |
二进制类 | BINARY |
说明 您需要将INTEGER类型的数据,在脚本模式中配置为INT类型,DataWorks会将其转换为INTEGER类型。如果您直接配置为INTEGER类型,日志将会报错,导致任务无法顺利完成。
参数说明
参数 | 描述 | 是否必选 | 默认值 |
---|---|---|---|
datasource | 数据源名称,脚本模式支持添加数据源,该配置项填写的内容必须与添加的数据源名称保持一致。 | 是 | 无 |
endPoint | Table Store Server的服务地址。 | 是 | 无 |
accessId | Table Store的AccessKey ID。 | 是 | 无 |
accessKey | Table Store的AccessKey Secret。 | 是 | 无 |
instanceName | Table Store的实例名称。 实例是您使用和管理Table Store服务的实体。开通Table Store服务后,需要通过管理控制台创建实例后,在实例内进行表的创建和管理。实例是Table Store资源管理的基础单元,Table Store对应用程序的访问控制和资源计量都在实例级别完成。 | 是 | 无 |
table | 所选取的需要抽取的表名称,此处能且只能填写一张表。在Table Store中不存在多表同步的需求。 | 是 | 无 |
primaryKey | Table Store的主键信息,使用JSON的数组描述字段信息。Table Store本身是NoSQL系统,在Table Store Writer导入数据过程中,必须指定相应的字段名称。 说明 Table Store的PrimaryKey仅支持STRING和INT两种类型,因此Table Store Writer本身也限定填写上述两种类型。 数据同步系统本身支持类型转换的,因此对于源头数据非STRING/INT,Table Store Writer会进行数据类型转换。配置示例如下。 | 是 | 无 |
column | 所配置的表中需要同步的列名集合,使用JSON的数组描述字段信息。 使用格式为: 其中的name指定写入的Table Store列名,type指定写入的类型。Table Store类型支持STRING、INT、DOUBLE、BOOL和BINARY类型。 | 是 | 无 |
writeMode | writeMode表示数据写入表格存储的格式,目前支持以下两种模式:
| 是 | 无 |
requestTotalSizeLimitation | 该配置限制写入Table Store时单行数据的大小,配置类型为数字。 | 否 | 1MB |
attributeColumnSizeLimitation | 该配置限制写入Table Store时单个属性列的大小,配置类型为数字。 | 否 | 2MB |
primaryKeyColumnSizeLimitation | 该配置限制写入Table Store时单个主键列的大小,配置类型为数字。 | 否 | 1KB |
attributeColumnMaxCount | 该配置限制写入Table Store时属性列的个数,配置类型为数字。 | 否 | 1,024 |
向导开发介绍
暂不支持向导模式开发。
脚本开发介绍
配置一个写入Table Store作业,使用脚本模式开发的详情请参见通过脚本模式配置任务。
{
"type":"job",
"version":"2.0",//版本号。
"steps":[
{
"stepType":"stream",
"parameter":{},
"name":"Reader",
"category":"reader"
},
{
"stepType":"ots",//插件名。
"parameter":{
"datasource":"",//数据源。
"column":[//字段。
{
"name":"columnName1",//字段名。
"type":"INT"//数据类型。
},
{
"name":"columnName2",
"type":"STRING"
},
{
"name":"columnName3",
"type":"DOUBLE"
},
{
"name":"columnName4",
"type":"BOOL"
},
{
"name":"columnName5",
"type":"BINARY"
}
],
"writeMode":"",//写入模式。
"table":"",//表名。
"primaryKey":[//Table Store的主键信息。
{
"name":"pk1",
"type":"STRING"
},
{
"name":"pk2",
"type":"INT"
}
]
},
"name":"Writer",
"category":"writer"
}
],
"setting":{
"errorLimit":{
"record":"0"//错误记录数。
},
"speed":{
"throttle":false,//false代表不限流,下面的限流速度不生效;true代表限流。
"concurrent":1//作业并发数。
}
},
"order":{
"hops":[
{
"from":"Reader",
"to":"Writer"
}
]
}
}
相关文档
相关产品
- DataWorks
新一代智慧大数据研发平台DataWorks(数据工场,原大数据开发套件)是从工作室、车间到工具集都齐备的一站式大数据工场,助力您快速完成数据集成、开发、治理、服务、质量、安全等全套数据研发工作。DataWorks + MaxCompute 在2018年获得著名分析评测机构Forrester的Cloud Data Warehouse云数据仓库世界排名第二的成绩,是唯一入选的中国产品。 DataWorks V2.0 在DataWorks V1.0的基础上新增业务流程、组件的概念,完善数据研发体系,支持双项目开发,隔离开发和生产,保证数据研发规范,减少错误代码。
- MaxCompute
大数据计算服务(MaxCompute,原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。 诚邀您参加阿里云MaxCompute问卷调研,问卷填写大概需要花费您5-10分钟。我们将在认真填写的用户中随机抽取100名,每名用户赠送100元MaxCompute无门槛代金券。参与地址:https://survey.aliyun.com/apps/zhiliao/boGZtw_74
- 智能数据构建与管理 Dataphin
Dataphin(智能数据构建与管理)是智能的