提升 Java 字符串编码解码性能的技巧 常见的字符串编码有LATIN1、UTF-8、UTF-16、GB18030,他们各有各的特点,且之间的转换比较复杂。本文将为大家介绍提升Java字符串编码解码性能的技巧。
阿里云张新涛:异构计算为数字经济提供澎湃动力 5月11日,在“2022阿里云视觉计算私享会”上,阿里云弹性计算产品专家张新涛为大家带来了题为《阿里云弹性计算在视觉计算上的应用实践》的主题分享。以下内容根据他的演讲整理而成。
携手数字人、数字空间、XR平台,阿里云与伙伴共同建设“新视界” 2022年互联网行业里XR、数字孪生、虚拟现实等领域再次“翻红”、新旧概念频出,不少人相信这些技术将给当下的互联网行业乃至传统行业带来翻天覆地的变化。虽然XR的应用场景广泛,但其背后所需要的巨大算力仍是亟待解决的技术难题之一,我们坚信Cloud XR将是这个领域的最佳选择。
如何使用阿里云 CDN 对部署在函数计算上的静态网站进行缓存 为了进一步提升网站的访问速度,我们会使用 CDN 对网站进行加速,但是最近在调试阿里云的函数计算和 CDN 的配合使用时发现了一个需要额外注意的地方。
“晕乎乎的概念”:阿里云函数计算的“应用”又是个啥 为什么阿里云函数计算发布了这么多功能,只有少数的功能会伴随着体验活动一起来做运营?那么这个“应用”到底是何方神圣?他和现在“服务”,“函数”有啥关系?
云钉一体:EventBridge 联合钉钉连接器打通云钉生态 千呼万唤始出来,三月末 OpenClusterManagement 社区正式发布了 v0.7 版本。在新的版本有一系列新的功能特性欢迎感兴趣的读者体验探索,同时在这个版本中社区维护者对目前已有的功能也修复了一些问题并对面向最终用户的体验进行了打磨和提升。
Serverless 应用中心:Serverless 应用全生命周期管理平台 Serverless 应用中心,是阿里云 Serverless 应用全生命周期管理平台。通过 Serverless 应用中心,用户在部署应用之前无需进行额外的克隆、构建、打包和发布操作,即可快速部署和管理应用。Serverless 应用中心帮助用户快速联动云上的上下游服务,轻松沉淀最佳实践。
浅析微服务全链路灰度解决方案 帮助应用发布版本过程中更精细化,提高了发布过程中的稳定性。服务转移⾄请求链路上进行流量控制,有效保证了多个亲密关系的服务顺利安全发布以及服务多版本并⾏开发,进⼀步促进业务的快速发展。
作业帮在线业务 Kubernetes Serverless 虚拟节点大规模应用实践 目前方案已经成熟,高峰期已有近万核规模的核心链路在线业务运行在基于阿里云 ACK+ECI 的 Kubernetes Serverless 虚拟节点。随着业务的放量,未来运行在 Serverless 虚拟节点上的服务规模会进一步扩大,将节省大量的资源成本。
分布式系统可观测性之应用业务指标监控 本文主要讲述如何建立应用业务指标Metrics监控和如何实现精准告警。Metrics 可以翻译为度量或者指标,指的是对于一些关键信息以可聚合的、数值的形式做定期统计,并绘制出各种趋势图表。透过它,我们可以观察系统的状态与趋势。
MAE 自监督算法介绍和基于 EasyCV 的复现 近年来,自监督学习受到了越来越多的关注,如Yann Lecun也在 AAAI 上讲 Self-Supervised Learning 是未来的大势所趋。在CV领域涌现了如SwAV、MOCO、DINO、MoBY等一系列工作。MAE是kaiming继MOCO之后在自监督学习领域的又一力作。首先,本文会对MAE进行解读,然后基于EasyCV库的精度复现过程及其中遇到的一些问题作出解答。
5月25日,阿里云开源 PolarDB-X 将迎来升级发布 PolarDB-X 从 2009 年开始服务于阿里巴巴电商核心系统, 2015 年开始对外提供商业化服务,并于 2021 年正式开源。本次发布会将重磅推出在稳定性、生态融合以及易用性上有了长足进步的 2.1 版本,新增 X-Paxos、自动分区、OSS 冷热数据分离等诸多重要特性,并在 MySQL 生态融合、K8S 生态融合方向持续迭代。
解决微服务架构下流量有损问题的实践和探索 绝⼤多数的软件应⽤⽣产安全事故发⽣在应⽤上下线发布阶段,尽管通过遵守业界约定俗成的可灰度、可观测和可滚回的安全⽣产三板斧,可以最⼤限度的规避发布过程中由于应⽤⾃身代码问题对⽤户造成的影响。但对于⾼并发⼤流量情况下的短时间流量有损问题却仍然⽆法解决。因此,本文将围绕发布过程中如何解决流量有损问题实现应⽤发布过程中的⽆损上下线效果相关内容展开⽅案介绍。
企业版 Spark Databricks + 企业版 Kafka Confluent 联合高效挖掘数据价值 本文介绍了如何使用阿里云的Confluent Cloud和Databricks构建数据流和LakeHouse,并介绍了如何使用Databricks提供的能力来挖掘数据价值,使用Spark MLlib构建您的机器学习模型。
前端性能优化实战 引用彼得·德鲁克的一句话,“You can't manage what you can't measure。一件事如果你无法衡量它、你就无法管理它”,性能同样如此。如果没有一个准确的方案来对性能进行度量,那优化就无从谈起。那么对于我们来说,哪些指标是可以用来对页面性能、用户体验进行度量的呢?