取得汉子拼音首字母

public class GetFirstLetter {

// 国标码和区位码转换常量
private static final int GB_SP_DIFF = 160;

// 存放国标一级汉字不同读音的起始区位码
private static final int[] secPosvalueList = { 1601, 1637, 1833, 2078,
2274, 2302, 2433, 2594, 2787, 3106, 3212, 3472, 3635, 3722, 3730,
3858, 4027, 4086, 4390, 4558, 4684, 4925, 5249, 5600 };

// 存放国标一级汉字不同读音的起始区位码对应读音
private static final char[] firstLetter = { 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'w', 'x', 'y', 'z' };

// 获取一个字符串的拼音码
public static String getFirstLetter(String oriStr) throws Exception {
String str = oriStr.toLowerCase();
StringBuffer buffer = new StringBuffer();
char ch;
char[] temp;
for (int i = 0; i < str.length(); i++) { // 依次处理str中每个字符
ch = str.charAt(i);
temp = new char[] { ch };
byte[] uniCode = new String(temp).getBytes("GBK");
if (uniCode[0] < 128 && uniCode[0] > 0) { // 非汉字
buffer.append(temp);
} else {
buffer.append(convert(uniCode));
}
}
return buffer.toString();
}

/**
* 获取一个汉字的拼音首字母。 GB码两个字节分别减去160,转换成10进制码组合就可以得到区位码
* 例如汉字"你"的GB码是0xC4/0xE3,分别减去0xA0(160)就是0x24/0x43
* 0x24转成10进制就是36,0x43是67,那么它的区位码就是3667,在对照表中读音为‘n'
*/
private static char convert(byte[] bytes) {
char result = '-';
int secPosvalue = 0;
int i;
for (i = 0; i < bytes.length; i++) {
bytes[i] -= GB_SP_DIFF;
}
secPosvalue = bytes[0] * 100 + bytes[1];
for (i = 0; i < 23; i++) {
if (secPosvalue >= secPosvalueList[i]
&& secPosvalue < secPosvalueList[i + 1]) {
result = firstLetter[i];
break;
}
}
return result;
}
}
内容概要:本文详细介绍了OCR(光学符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值