题意: n块草地上有一定数量的牛,和一定数量牛棚,现在要让所有的牛进入牛棚,问牛的最长最短距离是多少。
解法: 将草地拆点,每块草地牛的数量与源点连边,牛棚数与汇点连边,拆开的两个点连一条无穷大的边。
用floyd跑一遍求出任意两点的最短距离,然后二分答案,每次重建图,将符合条件的边以容量INF加进容量网络里,跑一遍最大流,如果等于牛总数就更新答案,刷新上界,否则刷新下界。
数据比较变态,floyd要用__int64跑。
笔者卡这题两天,原因实在是SB啊:二分的上界开的Inf,当取到这个上界的时候只要容量总数大于等于牛总数就一定可行。但是事实上是如果图不连通,这个方案是不可行的。
质疑了4份SAP模板有问题,最后是自己打开方式不对- -!!模板还是彻底理解了再用,免得心虚。。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef __int64 lld;
const int MAXN=410;
const int INF = ~0u>>2;
const lld Inf = 100000000000000000;
#define clr(a,b) memset(a,b,sizeof(a))
#define FOR(i,a,b) for(int i=(a); i<=(b); i++)
#define REP(i,a,b) for(int i=(a); i<(b); i++)
struct EDGE {
int u,v,c,next;
EDGE() {}
EDGE(int u, int v, int c) : u(u), v(v), c(c) {}
}edge[101000];
int E,head[MAXN];
int gap[MAXN], cur[MAXN], pre[MAXN], dis[MAXN];
void add_edge(int s,int t,int c,int cc = 0)
{
edge[E].v=t; edge[E].c=c;
edge[E].next=head[s]; head[s]=E++;
edge[E].v=s; edge[E].c=cc;
edge[E].next=head[t]; head[t]=E++;
}
int min(int a,int b){return (a==-1||b<a)?b:a;}
int SAP(int s,int t,int n)
{
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
int i;
for(i=0;i<n;i++)cur[i]=head[i];
int u=pre[s]=s,maxflow=0,aug=-1,v;
gap[0]=n;
while(dis[s]<n)
{
loop: for(i=cur[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(edge[i].c>0&&dis[u]==dis[v]+1)
{
aug=min(aug,edge[i].c);
pre[v]=u;
cur[u]=i;
u=v;
if(u==t)
{
for(u=pre[u];v!=s;v=u,u=pre[u])
{
edge[cur[u]].c-=aug;
edge[cur[u]^1].c+=aug;
}
maxflow+=aug;
aug=-1;
}
goto loop;
}
}
int mindis=n;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(edge[i].c>0&&dis[v]<mindis)
{
cur[u]=i;
mindis=dis[v];
}
}
if((--gap[dis[u]])==0)break;
gap[dis[u]=mindis+1]++;
u=pre[u];
}
return maxflow;
}
int n,sum;
EDGE tg[101000];
int tot;
lld gg[MAXN][MAXN];
void gao() {
lld l = 0, r = Inf - 1;
lld ans = -1;
while(l <= r) {
lld m = (l+r)>>1;
E = 0;
REP(i,0,2*n+2) head[i] = -1;
REP(i,0,tot) add_edge(tg[i].u,tg[i].v,tg[i].c);
FOR(i,1,n) FOR(j,1,n) {
if(i == j || gg[i][j] > m) continue;
add_edge(i,j+n,INF);
}
if(SAP(0,2*n+1,2*n+2) == sum) r = m - 1, ans = m;
else l = m + 1;
}
printf("%I64d\n", ans);
}
lld min(lld a, lld b) { return a<b ? a : b; }
int main() {
int m;
while(~scanf("%d%d", &n, &m)) {
int a,b;
tot = 0;
sum = 0;
FOR(i,1,n) {
scanf("%d%d", &a, &b);
tg[tot ++] = EDGE(0,i,a);
tg[tot ++] = EDGE(i+n,2*n+1,b);
tg[tot ++] = EDGE(i,i+n,INF);
sum += a;
}
FOR(i,1,n) FOR(j,1,n) gg[i][j] = Inf;
FOR(i,1,n) gg[i][i] = 0;
lld c;
while(m--) {
scanf("%d%d%I64d", &a, &b, &c);
gg[a][b] = gg[b][a] = min(gg[a][b], c);
}
FOR(k,1,n) FOR(i,1,n) FOR(j,1,n)
gg[i][j] = min(gg[i][j], gg[i][k]+gg[k][j]);
gao();
}
return 0;
}