这个题我本来想用记忆化,因为最开始想过这种DP的,发现复杂度比较高,但后来我用记忆化交上去无奈TLE,然后赛后他们居然说是用这样的DP写的,无奈,重写~
重新认识杭电的性能了,其实比较简单吧,dp[i][j][k]表示第i次到第j个点未经过k的概率,然后看代码吧~、
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=51;
const int maxm=maxn*maxn;
int e,head[maxn],pnt[maxm],nxt[maxm];
int n,m,d,cnt[maxn];
double dp[2][maxn][maxn],ans[maxn];
void AddEdge(int u,int v)
{
pnt[e]=v;nxt[e]=head[u];head[u]=e++;
pnt[e]=u;nxt[e]=head[v];head[v]=e++;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
e=0;
memset(head,-1,sizeof(head));
memset(dp,0,sizeof(dp));
memset(cnt,0,sizeof(cnt));
scanf("%d%d%d",&n,&m,&d);
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
AddEdge(u,v);
cnt[u]++;
cnt[v]++;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)
dp[0][i][j]=1.0/n;
int pos=1;
for(int i=1;i<=d;i++,pos^=1)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
if(j!=k)
{
dp[pos][j][k]=0;
for(int s=head[j];s!=-1;s=nxt[s])
dp[pos][j][k]+=dp[pos^1][pnt[s]][k]/cnt[pnt[s]];
}
memset(ans,0,sizeof(ans));
pos^=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[j]+=dp[pos][i][j];
for(int i=1;i<=n;i++)
printf("%.10f\n",ans[i]);
}
return 0;
}