NSU-1241-麦森数

9 篇文章 0 订阅

这个题是个高精度题,要求求2的k次方-1的后500位,不足的用0补,另外还要求计算2的k次方-1的位数。

首先求位数可用公式进行计算,公式为n=k*log(10)2.0+1;

然后写个高精度计算即可,最后只是需要注意换行的问题。

这里分2种情况进行换行:

1、当i%25==0的时候刚好是100位,因为每个数组我们存的4位。

2、当i%25==12的时候,由1我们知道对于100的情况我们已经处理过,剩下的就只有当50*n(当n为奇数的情况需要处理),我们可以知道50%4=2,150%4=2,都以2作为余数,所以这里我们需要进行一个人为的分割操作,而我们知道为奇数的时候它最后2位总是48,所以我们可以将公式转换为4*i%50==48,这样就比较明显的得到当n为奇数的情况

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#define Mod 10000
void mult(int a[],int b[])
{
    int c[126];
    memset(c,0,sizeof(c));
    for(int i=0;i<125;i++)
    {
	int arry=0;
	for(int j=0;j<125-i;j++)
	{
	    int ita=c[i+j]+a[i]*b[j]+arry;
	    arry=ita/Mod;
	    c[i+j]=ita%Mod;
	}
    }
    memcpy(a,c,125*sizeof(int));
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
	int ans=(int)n*log10(2.0)+1;
	printf("%d\n",ans);
	int a[126],b[126];
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	a[0]=1;
	b[0]=2;
	while(n)
	{
	    if(n&1)
		mult(a,b);
	    mult(b,b);
	    n>>=1;
	}
	a[0]--;	
	for(int i=124;i>=0;i--)
	{
	    if(i%25==12)
		printf("%02d\n%02d",a[i]/100,a[i]%100);
	    else
	    {
		printf("%04d",a[i]);
		if(i%25==0)
		    printf("\n");
	    }
	}
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值