因为腾讯马拉松的关系,停在动归这里几天了,今天才得以继续。看了半天终于明白这个题的动归策略,书上给的策略也就是
f(s)=max{(f(s0)|s0是s的子集,cover[s0]等于全集}+1;
这个题因为n范围的原因使得我们可以用二进制进行表示,首先找到每台机子能够连接的所有机子,然后cover(s)表示pi的集合s中所有pi的并集,其实就是说以当前点进行操作最多可以使得多少台机子停止工作。
然后后面只需要枚举s的子集s0即可,这里不得不佩服作者用的这个技巧,即s0=(s0-1)&s这样便使得s的子集全部找到,受教了!
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1<<17+10;
int p[maxn],cover[maxn],dp[maxn];
int cas=1;
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
for(int i=0;i<n;i++)
{
p[i]=1<<i;
int m;
scanf("%d",&m);
while(m--)
{
int ita;
scanf("%d",&ita);
p[i]|=(1<<ita);
}
}
for(int i=0;i<(1<<n);i++)
{
cover[i]=0;
for(int j=0;j<n;j++)
if(i&(1<<j))
cover[i]|=p[j];
}
dp[0]=0;
int Full=(1<<n)-1;
for(int i=1;i<=Full;i++)
{
dp[i]=0;
for(int j=i;j!=0;j=(j-1)&i)
if(cover[j]==Full)
dp[i]=max(dp[i],dp[i^j]+1);
}
printf("Case %d: %d\n",cas++,dp[Full]);
}
return 0;
}