图像处理算法
东西北
机器视觉
展开
-
图像中的高频分量和低频分量
图像的高低频是对图像各个位置之间强度变化的一种度量方法.低频分量:主要对整副图像的强度的综合度量.高频分量:主要是对图像边缘和轮廓的度量.如果一副图像的各个位置的强度大小相等,则图像只存在低频分量,从图像的频谱图上看,只有一个主峰,且位于频率为零的位置.如果一副图像的各个位置的强度变化剧烈,则图像不仅存在低频分量,同时也存在多种高频分量,从图像的频谱上看,不仅有一个转载 2012-06-05 09:41:36 · 4427 阅读 · 0 评论 -
HALCON模板匹配
基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间。去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇《基于HDevelop的形状匹配算法参数的优化研究》文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来转载 2014-07-25 16:13:18 · 5003 阅读 · 0 评论 -
Halcon 模板匹配参数详解
图像和实例有助于更好的理解参数含义和如何应用推荐:实例详解Halcon定位与模板匹配create_shape_model(Template : :NumLevels, AngleStart, AngleExtent, AngleStep, Optimization, Metric, Contrast, MinContrast转载 2014-03-07 17:47:28 · 17101 阅读 · 1 评论 -
傅立叶变换在图像处理中的应用
1、为什么要进行傅里叶变换,其物理意义是什么?傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是反傅立叶变换算转载 2014-01-24 15:00:53 · 7758 阅读 · 1 评论 -
直线细化的两种方式
直线细化函数static int erasetable[256]={ 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1, 1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1, 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1, 1,1,0,0,1,1,1,1, 0,0,0,0转载 2013-01-04 10:58:01 · 1056 阅读 · 1 评论 -
Mahalanobis距离(马氏距离)
Mahalanobis距离(马氏距离)Mahalanobis距离是多维空间中两点相似性的度量,它本身不是聚类或者分类算法。Mahalanobis距离与Euclidean距离(欧式距离)类似,不过还需除以空间的协方差矩阵。如果协方差矩阵是单位矩阵,则Mahalanobis距离退化为Euclidean距离。 opencv计算协方差矩阵函数CVAPI(void) cvCal原创 2012-12-20 10:36:04 · 9178 阅读 · 1 评论 -
协方差矩阵
浅谈协方差矩阵 声明:本文转自颖风的博客,原文地址:http://www.pinkyway.info/2010/08/31/covariance/ 今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵。统计学的基本概念学过概率统转载 2012-12-20 09:46:18 · 1326 阅读 · 0 评论 -
三十分钟掌握STL
三十分钟掌握STL这是本小人书。原名是《using stl》,不知道是谁写的。不过我倒觉得很有趣,所以化了两个晚上把它翻译出来。我没有对翻译出来的内容校验过。如果你没法在三十分钟内觉得有所收获,那么赶紧扔了它。文中我省略了很多东西。心疼那,浪费我两个晚上。译者:karycontact:karymay@163.netSTL概述STL的一个重要特点是数据结构和算法的分离。尽转载 2012-12-14 18:04:56 · 620 阅读 · 0 评论 -
SIFT特征点匹配与消除错配:BBF,RANSAC .
转自http://blog.csdn.net/ijuliet/article/details/4471311 Step1: BBF算法,在KD-tree上找KNN。第一步做匹配咯~ 1. 什么是KD-tree(from wiki)K-Dimension tree,实际上是一棵平衡二叉树。一般的KD-tree构造过程:function kdtree (li转载 2012-11-15 11:45:53 · 1603 阅读 · 0 评论 -
图像的小波变换处理
待编辑原创 2012-06-05 11:38:03 · 1677 阅读 · 0 评论 -
图像预处理SSE加速,90度旋转和垂直镜像
图像预处理操作的90度整倍数旋转、镜像,都可由以下两个基本操作组合得出,测试比单点操作速度提升约3-5倍。//镜像-1*16单字节矩阵 void MirrorMatrix(__m128i *pSrc_tmp ,__m128i *pDst_tmp , __m128i sort){ _mm_storeu_si128(pDst_tmp, _mm_shuffle_epi8(_mm_loadu_s原创 2016-09-20 14:07:52 · 2183 阅读 · 1 评论