- 博客(5)
- 收藏
- 关注
原创 基于 MapReduce 的学生成绩平均分统计实战:从原理到实现
MapReduce 最早由 Google 于 2004 年在《MapReduce: Simplified Data Processing on Large Clusters》论文中提出,其诞生的核心驱动力是解决大规模数据处理的效率瓶颈。在互联网数据爆炸式增长的背景下,传统单机数据处理方式难以应对 TB 级甚至 PB 级数据的计算需求。Hadoop 作为开源大数据生态的核心,完整实现了 MapReduce 编程模型,使其从 Google 的内部技术转变为全球开发者均可使用的通用大数据处理框架。
2026-01-11 16:38:02
832
原创 【大数据分析】基于渐变堆叠面积图的多维度业务数据可视化实践
技术层面:掌握了 ECharts 渐变堆叠面积图的构建方法,理解了 “stack 属性”“渐变配置” 等核心技术点;业务层面:学会了从可视化结果中提炼 “趋势、占比、协同性” 等业务结论,契合大数据分析的 “数据→信息→决策” 逻辑。该图表可直接应用于企业的 “业务监控报表”“周度数据复盘” 等场景,是大数据分析师必备的可视化技能之一。
2025-12-31 09:01:05
819
原创 【数据可视化实战】基于 ECharts 的 Gradient Stacked Area Chart 深度实现与场景落地
在数据可视化领域,堆叠面积图(Stacked Area Chart)凭借 “兼顾整体趋势与局部占比” 的核心优势,成为多维度数据对比分析的首选图表类型。而 Gradient Stacked Area Chart(渐变堆叠面积图)在其基础上融入色彩渐变设计,既提升了视觉表现力,又能更清晰地区分多组数据。
2025-12-31 08:43:40
624
原创 学习Python数据分析 实现航空公司用户数据可视化
未来,我会带着这份对数据的敬畏与好奇,继续深耕可视化领域,让更多沉默的数据,通过图表讲述精彩故事,为决策提供更有力的支撑,在数据科学的道路上稳步前行。2. 实现代码# 绘制散点图plt.figure(figsize=(10, 6)) plt.scatter(df['平均折扣系数'], df['飞行里程数'], alpha=0.6) plt.xlabel('平均折扣系数') plt.ylabel('飞行里程数') plt.title('用户“平均折扣系数”和“飞行里程数”散点图') plt.show()
2025-06-24 11:06:37
646
原创 大一Python学习心得
例如,在解决一个判断闰年的问题时,我学会了运用条件语句和逻辑运算符,将复杂的闰年判断规则转化为代码中的“if-else”结构,这种将实际问题抽象为代码的过程,让我感受到了编程的强大与魅力。函数的学习是一个重要的转折点。我学会了将一段具有特定功能的代码封装成函数,使其可以在程序的不同地方被重复调用,这不仅提高了代码的复用性,也让程序的结构更加清晰。作为一名大一新生,踏入大学校园后接触到的 Python 课程,为我打开了一扇通往全新知识领域的大门,在这段学习历程中,我收获了丰富的知识和宝贵的经验。
2024-12-18 09:16:31
377
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅