- 博客(504)
- 收藏
- 关注
原创 万字长文!RAG的实战指南及探索之路
RAG(Retrieval Augmented Generation,检索增强生成 )方法是指结合了基于检索的模型和生成模型的能力,以提高生成文本的质量和相关性。该方法是Meta在2020年发表的文章《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出的,该方法让LM(Language Model,语言模型)能够获取内化知识之外的信息,并允许LM在专业知识库的基础上,以更准确的方式回答问题。
2024-12-12 16:52:34 363
原创 关于RAG(Retrieval-Augmented Generation)7 连问
本篇适合有一定的AI 开发经验的人阅读1:RAG使用技巧有哪些?数据提取与处理:将不同格式的数据(PDF、Word、Markdown等)进行过滤、压缩、格式化等处理,以统一数据格式。分块(Chunking):将文档分割成一定大小的块,以保持语义完整。向量化(Embedding):将文本数据转化为向量矩阵,直接影响检索效果。模型选型:选择合适的Embedding模型对RAG技术至关重要,直接影响信息检索的效果和生成文本的质量。
2024-12-12 16:42:10 577
原创 AI时代如何成为一名AI产品经理?要学什么?怎么学?看这一篇就够了!
AI时代如何成为一名AI产品经理?要学什么?怎么学?看这一篇就够了!要成为一名AI产品经理,需要综合多方面的知识和技能,并在实践中不断学习和提升。
2024-12-12 16:26:12 625
原创 世界上第一本把Transformer进行了全面、系统级解读的书籍!
截止于到目前,这是,共包含了,你可以掌握每个架构的理论知识与实用技巧,以及如何在现实场景中去使用它。作者通过七个大的章节彻彻底底的把Transformer架构进行了非常底朝天式的解读,👉[CSDN大礼包(安全链接,放心点击)]👈从时间线、历史及其对学术界和工业界的影响向读者简单的介绍了Transformer架构。
2024-12-11 16:56:31 605
原创 手把手教你定制企业AI知识库:打造专属智能体
在当今数据爆炸的时代,虽然AI强大,但常规的AI工具或搜索引擎在面对复杂、专业领域的问题时,可能给出模棱两可的回应,无法满足企业精细化的需求。这就是为什么,企业需要一个专属的AI知识库 —— 它不仅能存储你的数据,还能真正帮助你提取出所需的关键答案,训练你的模型。
2024-12-11 16:45:01 347
原创 学大模型必看这个gitHub项目!!汇集了所有开源中文大模型资源,含各领域微调大模型、数据集及教程
2022年底“大模型”在国内突然遍地开花,不管你身处什么行业,都或多或少听说或使用过大模型相关的工具,也听说过大模型训练是一件超级烧钱的事情。那你是否有想过大模型训练为什么会这么烧钱,或者说大模型到底大在了哪里呢?防止劝退,阅读本文章你不用担心看不懂晦涩难懂的公式以及计算过程,本文仅作为一篇大模型科普文章,带你了解你使用的大模型背后的故事,文章最后会推荐一些帮助博主日常提效的大模型工具,希望通过本文能让你对大模型有新的认识和理解。
2024-12-11 16:38:41 1196
原创 白话告诉你大模型到底是怎么工作的
2022年底“大模型”在国内突然遍地开花,不管你身处什么行业,都或多或少听说或使用过大模型相关的工具,也听说过大模型训练是一件超级烧钱的事情。那你是否有想过大模型训练为什么会这么烧钱,或者说大模型到底大在了哪里呢?防止劝退,阅读本文章你不用担心看不懂晦涩难懂的公式以及计算过程,本文仅作为一篇大模型科普文章,带你了解你使用的大模型背后的故事,文章最后会推荐一些帮助博主日常提效的大模型工具,希望通过本文能让你对大模型有新的认识和理解。
2024-12-09 10:47:56 855
原创 30+程序员想转行做大模型?程序员们,先看看这份指南
随着大模型技术的快速发展,越来越多的程序员开始考虑转型入局AI大模型领域。那么,对于程序员来说,如何顺利地完成这一转型呢?本文将从行业前景、薪资待遇、岗位需求,程序员转行大模型的优势,以及目前互联网行业的发展风向三个方面进行详细阐述。
2024-12-07 09:00:00 727
原创 Milvus 在多语言 RAG 场景下的应用优势
本文通过实践演示了 Milvus 在多语言 RAG 场景下的应用优势。结合 m3e 模型,我们实现了中英日三语的高效检索和问答,系统能准确理解不同语言的问题并从知识库中找出相关内容。这种基于向量数据库的解决方案,让多语言知识检索变得简单可靠,为构建跨语言应用提供了一个实用的技术选择。
2024-12-06 14:07:46 972
原创 已入职华为大模型算法岗,面试真的很水的…
简历项目深度交流1.项目的背景是什么,主要解决了什么问题?2.训练数据集是如何构造的,都有什么类型的数据,总量有多大?3.有没有进行微调?4.解释-下 Prompt Tuning、Adapter Tuning、LORA 等微调方法的原理,分别适用于哪些场景?5.如何评估模型微调效果的好坏呢?6.微调用了多大的显卡,有关注内存占用情况吗?7.模型底层为什么选择了70b的版本呢,选择的依据是什么?8.是否了解常用的模型加速技巧?9.微调如何避免出现灾难性遗忘和“复读机”问题?
2024-12-04 11:20:54 488
原创 探秘大模型核心:12本入门必读书籍,助你快速掌握大模型精髓
随着AI在越来越多的行业被应用,AI赋能的价值逐步体现出来。本书从AI的本质出发,介绍AI技术过往的发展历程和最新的理论成果,然后讲解如何站在移动互联网和大数据的基础上,系统地学习、应用AI技术。本书希望向读者提供学习AI技术的资料、路径,以及打磨AI产品的观点、思路。此外,本书通过介绍笔者接触、打磨AI产品的实际经历,给大家指出AI赋能过程中需要避免的“坑”,期待我们在AI时代共同发展自己、发展生活,在未来遇到更好的AI产品、更好的自己。
2024-12-03 10:39:24 588
原创 Graph-RAG:知识图谱与大模型的融合
本文的探讨让我们认识到,Graph-RAG 不仅是一种技术进步,它更是一种思考方式的革新。Graph-RAG 系统以其独特的能力,让我们在数据的海洋中航行得更远,理解得更深。展望未来,我们期待这一系统能够继续进化,成为连接知识孤岛、激发创新思维的桥梁,引领我们进入一个更加智能和互联的信息时代。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。
2024-12-02 16:37:03 882
原创 AI产品经理到底有多吃香?看完我震惊了,这么赚钱,年薪90W!!
ChatGPT爆火后,有人就预言“所有行业都值得用AI重做一遍”,而头一个被AI浪潮吹到的领域,非产品届莫属了。从去年底开始,全球各大企业就处于空前的人AI招聘狂潮中,一些公司甚至不惜开出接近七位数的年薪来雇佣顶尖人才。亚马逊人工智能高级产品经理的薪酬达到了34.03万美元;Match Group旗下的在线约会平台Hinge招聘人工智能副总裁,基础年薪为33.2万至39.8万美元;著名兼职平台Upwork,人工智能副总裁一职的年薪为26万至43.7 万美元;
2024-12-02 16:33:39 364
原创 EMNLP 2024:使用大模型预测股市回报
作者来自瑞士日内瓦的RAM Active Investments的Systematic Equities Team。论文探讨了如何对大型语言模型(LLMs)进行微调,以利用财经新闻流来预测股票回报。股票回报预测对于量化投资任务,如投资组合构建和优化,是基础且重要的。
2024-11-28 11:17:22 610
原创 未来6年内,50%的工作会被AI取代
*相对于AI,我们最后的优势,也许就是我们是“人”本身,而与“人”伴生、且AI难以学习和模仿的能力,就是我们的社会和情感技能。AI时代对认知能力提出了更高的要求,为了更好的处理复杂信息,我们需要具备更高的认知能力,包括高级读写技能、复杂信息处理与解释、创造力、批判性思维和决策、项目管理、定量和统计技能等。近期,麦肯锡全球研究院发布的《工作的新未来》报告显示:“在2030年至2060年间,将会有50%的现有职业被AI取代,中点为2045年,而且与之前的估计相比,这一过程加速了大约10年。
2024-11-27 10:39:16 800
原创 2025AI产品经理转行分析:AI产品经理的职业前景
这两类岗位的薪资也是最丰厚的,建议大家求职这两类岗位,其中与算法相关岗位对技术要求很高,入职门槛自然也高,AI产品经理作为非技术岗,行业需求大的同时薪资水平与其他非技术职位相比非常具有竞争力。过去一年,人工智能产业浪潮席卷全球,《中国互联网发展报告(2024)》指出,截至2024年7月,我国人工智能核心产业规模达5784亿元,同比增长158%:从企业数量来看,最近和字节,腾讯,百度的资深AI产品沟通他们都反馈:在大量为新项目招人,只要有AIGC项目经验,学历别太差就能拿到面试机会。
2024-11-27 10:33:57 888
原创 想知道的都有!大模型的定义、基本架构、训练、经典代表、应用和挑战全解析
这些模型通常基于深度学习技术,尤其是Transformer架构,能够处理和生成自然语言文本。大模型的参数量可以达到数十亿甚至数千亿,这使得它们能够捕捉和学习数据中的复杂模式和关系。
2024-11-25 10:50:04 1363
原创 胡津铭在知乎上强烈推荐的一本大模型神书,没有废话,全是经验,简直是挖到宝啦!
大语言模型现在是人工智能领域的热门话题,它们在自然语言处理、机器学习等领域发挥着越来越重要的作用。但说实话,这些模型挺复杂的,不是随便翻翻就能懂的。今天给所有像入门这个领域的小伙伴们推荐一本书籍《大模型基础》,由浙江大学的毛玉仁和高云君两位专家撰写。如果你对大语言模型感兴趣,或者想要深入了解这个领域,这本书绝对值得一读。胡津铭大佬在知乎上是这么评价此书的:这本书的特别之处在于,它不仅仅是一本教材,更像是一个活生生的资源库。
2024-11-25 10:45:11 380
原创 一文全面说透,AI大模型!
近年来,随着深度学习技术的飞速发展,AI大模型作为人工智能领域的重要研究对象,正逐步成为学术界和产业界广泛关注的热点议题。AI大模型,作为一类具备庞大参数规模与卓越学习能力的神经网络模型,如BERT、GPT等,已在自然语言处理、计算机视觉等多个领域展现出卓越成效,极大地推动了相关领域的技术进步。AI大模型的价值不仅体现于其庞大的参数规模与强大的学习能力,更在于其对于解决现实世界复杂问题的巨大潜力。
2024-11-23 10:32:32 878
原创 java开发程序员转行可以做些什么?
Java程序员是一个职位,避免不了会出现有人想转行或者被迫转行的情况,有同学想要了解一下Java程序员转行的话都能干什么,这里小编就来给大家介绍几个比较多的,以供大家参考。
2024-11-23 10:25:16 1296
原创 【微调大模型】如何利用开源大模型,微调出一个自己大模型
最近对大模型这部分内容比较感兴趣,作者最早接触大模型是22年下半年的时候。当时觉得非常amazing,并认为这是一个颠覆性的工作,目前随着开源大模型的逐渐变多。我觉得我们得学习并了解这些基础知识,以便后续在工作中可以学习并使用。在深度学习中,微调是一种重要的技术,用于改进预训练模型的性能。除了微调ChatGPT之外,还有许多其他预训练模型可以进行微调。微调所有层:将预训练模型的所有层都参与微调,以适应新的任务。微调顶层:只微调预训练模型的顶层,以适应新的任务。冻结底层。
2024-11-20 09:55:30 1035
原创 AI大模型走进生活:普通人如何体验其带来的便利?
AI大模型会对我们的生活带来什么改变?这似乎是一个难以回答的问题。因为在人工智能出现的这么多年里,普通人的感知很弱,甚至完全没有感知。这与人工智能发展阶段有关,早期人工智能处于“专家系统”阶段,此时人工智能只能跟着预设的规则操作。此后,尽管随着大数据时代到来,人工智能进入“统计学习阶段”有了众多突破,如视觉识别、自然语言理解等,但也很难落地到普通人使用。在很长一段时间内,人工智能似乎只是人们对未来生活的想象,大部分人对人工智能的第一印象是在影像、电影中看到的“科幻”场景,虚幻、神秘,但触不可及。
2024-11-20 09:53:02 1045
原创 运维转行大模型,史上最全总结非常详细,收藏我这一篇就够了
运维心里苦谁做谁知道,有时候感觉自己像一个杂工,在公司都快变成一个修电脑的了,不装了我转行了,给大家分享一点经验,希望能帮助到你们。运维工程师转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从运维工程师转向大模型领域:了解基础知识:数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。编程语言:如果您已经熟悉Python,这是一个好的开始。Python是机器学习和数据科学领域中广泛使用的编程语言。
2024-11-20 09:51:06 1236
原创 普通人如何入门大模型—大模型技术学习过程梳理
从大的方向上来说,大模型从技术到应用,主要涉及到以上几个大的模块;而每个模块又涉及到大量的技术和细节。比如打造不同任务的神经网络模型,强化学习,迁移学习,知识蒸馏,分布式训练与存储等;以及RAG使用的向量检索,向量数据库,语义理解等,还有复杂任务的思维链(CoT),模型训练使用的LoRa等微调方法。还有多模态模型中的知识对齐,数据融合等复杂技术。因此,大模型技术到应用到学习是一个系统性的复杂过程,中间涉及到无数的技术细节和理论,并且还在不断的产生新的技术和理论。千里之行,始于足下。
2024-11-18 11:10:58 711
原创 LLM实践系列-聊聊大模型STF的数据清洗过程有多繁琐?
前段时间在清洗 sft 的数据,不得不说这工作是真磨人啊,细节多到让人抓狂。可能,这就是为什么从业者们都懂得 llm 的方法论,却依然没几个团队能造出好数据训出好模型吧。借此机会,举个例子给大家聊聊 sft 数据能有多少繁琐的细节?也算是吐槽和分享自己的日常了。先说一下为什么都 2024 年底了,还需要清洗 sft 数据,这不应该是去年就已经完成的工作吗?因为数据会过时,去年的高质量数据不代表今年还是高质量数据。例如,user:你会选择猫作为宠物还是狗呢?
2024-11-18 11:06:48 1056
原创 Dify + Xinference:一站式本地 LLM 私有化部署和应用开发
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。
2024-11-15 11:49:35 986
原创 超全大模型常见面试题(附答案)
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:
2024-11-15 11:41:49 1008
原创 fastRAG:构建和探索高效的检索增强生成模型和应用
使用SOTA高效组件构建RAG管道,以提高计算效率。:利用针对PyTorch(IPEX)的英特尔扩展、🤗最佳英特尔和🤗最佳哈瓦那在英特尔®至强®处理器和英特尔®高迪®人工智能加速器上尽可能最佳地运行。:FastRAG是使用Haystack和HuggingFace构建的。所有Fast RAG的组件都100%兼容Haystack。
2024-11-14 19:37:57 819
原创 Plan×RAG:规划引导的检索增强生成
Plan×RAG(Planning-guided Retrieval Augmented Generation)旨在通过增强现有的检索增强生成(RAG)框架,解决大型语言模型(LLM)在复杂查询中的性能、幻觉和归因问题。提出了将传统的“检索-推理”范式扩展为“规划-检索”范式,为整合外部知识到大型语言模型(LLM)中提供了新的视角。引入了推理有向无环图(DAG),将查询分解为相互关联的原子子查询,显著提高了系统的效率和可解释性。
2024-11-14 19:29:06 981
原创 我没有大模型经验,可以给个机会吗?
做大模型一年半,经历了无数场面试。我最常听到的候选人(尤其是学生)的说辞是:我没有大模型经验,可以给个机会吗?答案是,我们并不看重候选人的大模型训练经验。这里不是说经验不重要,而是大部分人的经验没有意义。只有头部大模型公司的核心骨干的经验才有意义,而这和绝大多数人选无关(e.g.: 校招/实习常见的简历是微调 LLaMA 7B,社招常见的简历是各个公司自己的 XX 大模型)。事实上,平平无奇的大模型经验反而是扣分项。候选人说自己有大模型训练经验,我会问:你说你有千卡训练 XX B 模型的经验,用的是什么并行
2024-11-12 10:31:33 777
原创 大模型量化技术原理:Atom、QuaRot
本文介绍了两篇W4A4KV4量化方法Atom和QuaRot。其中,Atom通过一系列方法(如:混合精度、量化异常值、分组量化、裁剪、GPTQ和KV缓存量化等)尽可能减少模型精度损失,尽可能大的提升模型吞吐量。而 QuaRot 则主要通过引入Hadamard变换来消除异常特征,从而提高量化模型的质量,可以使用RTN、GPTQ量化方法。默认采用GPTQ量化方案,其在小模型上是更好的选择。
2024-11-12 10:21:04 494
原创 【AI工作流】FastGPT - 深入解析FastGPT工作流编排:从基础到高级应用的全面指南
在FastGPT中,工作流编排是其核心功能之一。用户使用FastGPT的主要原因是其强大的知识库,而工作流则是提升用户体验的重要保障。通过简单的操作,用户可以快速构建知识库应用,工作流的强大功能可见一斑。在FastGPT 4.7版本中,工作流被称为高级编排,节点拥有多个输入和输出连接点,但不同连接点之间可能存在不兼容的情况,这使得新手用户在上手时面临一定挑战。然而,在4.8版本中,节点的连接点数量得到了显著简化,许多连接点被转化为节点内的参数,使用方式也进行了优化。工作流编排的核心在于节点和流向。
2024-11-10 13:41:38 791
原创 救命啊!字节大模型算法实习岗面试居然栽在Transformer上了!!
救命啊!居然栽在Transformer上了😭,面试官问为什么在进行softmax之前需要对attention进行scaled(为什么除以dk的平方根)?
2024-11-10 11:55:25 1178
原创 使用 LangChain 代理创建多模式聊天机器人的开发人员指南
使用_@tool_装饰器是在 LangChain 框架中定义自定义工具的最简单方法。装饰器默认使用函数名称作为工具名称,可以通过传递字符串作为第一个参数来覆盖该名称。此外,装饰器使用函数的文档字符串作为工具的描述,因此必须提供文档字符串。您还可以通过将工具名称和 JSON 参数传递到工具装饰器中来自定义它们(请参阅下面的第二个工具 get_countries_by_name)。代理将工具描述作为上下文添加到LLM中,以决定使用哪个工具。选择合适的描述至关重要。
2024-11-08 10:33:40 903
原创 如何解决AI模型的幻觉问题?
现在 AI 已经越来越普及,我们很多工作也能使用 AI 来进行提效,特别是大型语言模型(LLM)。你可能已经遇到过,AI有时候会一本正经地胡说八道,回答完全离谱,比如我们问 AI 什么是。“龙飞凤舞”,它可能会跟你说这是一种民族舞蹈。像这样的情况情况被称为“幻觉”,这由于AI在内容生成时并不总是基于真实的知识库,所以难免会闹出笑话。
2024-11-08 10:30:10 811
原创 入行大模型必看书籍-《多模态大模型:技术原理与实战》多模态大模型的核心技术
这本书的作者彭勇博士等,皆为大数据行业应用的专家,《多模态大模型技术原理与实战》比较系统的介绍了大模型的发展历程,并且资料引用整理到2022年,相当新。详细介绍了大语言模型和多模态大模型的发展历史、技术原理和亮点、主要的开源框架、配套工具、部署细则和实战案例。为了让读者更好地进行大模型的应用实战,本书还详细介绍了使用大模型为商业赋能的3个应用案例。期望本书能够帮助读者打开通往大模型尤其是多模态大模型的学习、实战和商业成功之路。内容概述:引入多模态大模型的概念,探讨其技术挑战与解决方案。
2024-11-06 11:01:08 1067
原创 详解大模型全参微调与LoRA的区别,及7种LoRA变种方法解析(内附代码)
LoRA系列大模型微调方法是大模型PEFT非常重要的一个研究方向,也是目前工程届应用最广法的微调方法之一,基于LoRA的改进的论文和方法还在不断更新。
2024-11-06 10:09:14 1090
原创 特定领域的Embeddings模型微调全面指南
在这篇博客文章中,我们将深入探讨为特定领域(如医学、法律或金融)微调嵌入模型的过程。我们将为你所在的领域生成一个特定的数据集,并利用它来训练模型,使其更好地理解该领域内的语言模式和概念。最终,你将拥有一个针对你的领域优化的更强大的嵌入模型,从而实现更准确的检索并提高你的自然语言处理任务的结果。
2024-11-04 15:08:57 673
原创 三个月轻松转行AI产品经理
2025年对于转行AI产品经理来说,确实是一个很好的机会。随着AI技术的快速发展和广泛应用,AI产品经理的需求也在不断增加📈。. 从智能语音助手到自动驾驶汽车,从智能家居到金融风控。人工智能已经渗透到各个行业和领域。这意味着,越来越多的企业和组织需要AI产品经理来负责开发和管理AI产品。AI领域热招岗位中图像识别、算法研究员、深度学习岗位均成为互联网炙手可热的岗位!❇AI产品经理作为非技术岗,薪资水平也达到了 互联网上游,与其他领域相比占据较大优势,成为新的行业风口。👼最近很多小伙伴问我。
2024-11-04 14:43:37 911
原创 一文总结AI智能体与传统RPA机器人的16个关键区别
基于LLM的)与**RPA(机器人流程自动化,Robotic Process Automation)**两种技术在自动化任务领域中扮演着至关重要的角色。AI智能体能够借助LLM拥有极高的灵活性,可以实时理解和响应环境的变化,并自主进行推理、决策与行动。而RPA是一种依赖预定义规则和工作流程的自动化技术,通过模拟人工操作来执行重复性高、流程清晰的任务。两者在自动化目标、实施效果、应用场景等方面具有诸多的相似点。本文和大家分享关于AI智能体与传统RPA机器人之间区别的详细总结。
2024-11-01 11:45:30 1113
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人