机器学习数据模型探索
在机器学习领域,有多种数据模型可供选择,不同的模型适用于不同的数据集和问题场景。下面将详细介绍几种常见的机器学习模型,包括高斯朴素贝叶斯、k - 近邻(k - NN)和决策树分类器,并给出具体的代码示例和操作步骤。
1. 高斯朴素贝叶斯(Gaussian Naive Bayes)
朴素贝叶斯可以扩展到实值属性,最常见的方法是假设数据服从高斯分布,这种扩展后的朴素贝叶斯被称为高斯朴素贝叶斯。与其他用于估计数据分布的函数相比,高斯分布或正态分布最容易处理,因为它只需要从训练数据中计算均值和标准差。
对于每个类别值,每个输入变量(x)的均值和标准差使用以下公式计算:
- 均值:$mean(x) = \frac{1}{n} \sum(x)$
- 标准差:$standard\ deviation(x) = \sqrt{\frac{1}{n} \sum(x_i - mean(x))^2}$
其中,$n$ 是实例的数量,$x$ 是输入变量的值。
新的 $x$ 值的概率使用高斯概率密度函数(PDF)计算:
$pdf(x, mean, sd) = \frac{1}{\sqrt{2\pi} \times sd} \times exp(-\frac{(x - mean)^2}{2 \times sd^2})$
下面是一个使用高斯朴素贝叶斯模型进行预测的 Python 脚本示例:
# Import Library of Gaussian Naive Bayes model
from sklearn.naive_b
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



