- 博客(19)
- 收藏
- 关注
原创 038基于深度学习的花卉自动识别pyqt界面
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。运行01训练数据集文本生成.py会将数据集图片路径带上标签保存在txt文本中。其中花卉数据集文件夹下存放的图像数据集。
2023-06-20 23:51:03 180
原创 037基于深度学习识别中药饮片数据集网页版
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。运行01训练数据集文本生成.py会将数据集图片路径带上标签保存在txt文本中。其中中药饮片数据集文件夹下存放的图像数据集。
2023-06-20 23:47:45 216
原创 035目标检测水下渔网
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。运行04ui_pyqt5.py是一个可视化的操作界面,通过点击按钮检测自己感兴趣的视频。运行01create_txt.py会将数据集图片路径带上标签保存在txt文本中。运行03predict.py会对单张图片进行检测。其中dataset文件夹下存放的图像数据集。
2023-06-20 23:46:51 210 1
原创 036中药饮片识别小程序python卷积网络训练模型识别
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。运行01训练数据集文本生成.py会将数据集图片路径带上标签保存在txt文本中。其中中药饮片数据集文件夹下存放的图像数据集。
2023-06-20 23:46:14 137
原创 034基于深度学习识别hwdb汉字数据集
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在logs文件夹下。运行01数据集文本生成制作.py会将数据集图片路径带上标签保存在txt文本中。运行03web.py是网页版本,通过点击按钮检测自己感兴趣的图片。
2023-06-20 23:45:22 101
原创 033基于hwdb手写汉字数据集的识别检测
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在logs文件夹下。运行01数据集文本生成制作.py会将数据集图片路径带上标签保存在txt文本中。其中data文件夹下存放的图像数据集。
2023-06-20 23:44:13 149
原创 032基于深度学习的蝴蝶品种识别网页版本
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在logs文件夹下。运行01数据集文本生成制作.py会将数据集图片路径带上标签保存在txt文本中。运行03web.py会展示一个网页界面,通过点击按钮检测自己感兴趣的图片。
2023-06-20 23:43:02 50
原创 031蝴蝶品种识别pyqt系统界面
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在logs文件夹下。运行01数据集文本生成制作.py会将数据集图片路径带上标签保存在txt文本中。其中data文件夹下存放的图像数据集。
2023-06-20 23:41:38 49
原创 030图像分割批量转化json格式数据集mask或图像轮廓提取
这个是直接生成的json文件在labelme工具种可视化的结果,可以看到红色区域是森林区域,效果还是不错的,用这个方法批量生成数据是有效的,省时间的。很多数据其实可以根据轮廓查找,找到目标的坐标点,然后我们再根据这些坐标点生成json格式的数据。很多时候我们对一些数据做图像分割需要手动打标签,按照轮廓去描,但是这样往往需要消耗很长的时间。不到一分钟5000多张图片就弄好了图像分割的json格式标签。
2023-06-20 23:38:03 495
原创 027目标检测小程序识别表情_人脸识别
其中data文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等。运行04server.py会生成一个接口供小程序交互,接受小程序传来的图片,再将识别好的图片传回去。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在runs文件夹下。运行01makeTxt.py会将数据集图片路径保存在txt文本中。
2023-06-19 23:41:05 91
原创 028yolov5视频检测_人脸识别表情识别
其中data文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在runs文件夹下。运行04ui_pyqt5.py会弹出一个可视化的ui界面,通过点击按钮检测自己感兴趣的视频。运行03detector_photo.py可以实现对单张图片的检测。
2023-06-19 23:40:39 321
原创 026人脸表情识别网页版
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。其中data文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在runs文件夹下。
2023-06-19 23:39:40 60
原创 025目标检测表情检测识别yolov5pyqt_python
其中data文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等。运行02train.py会将txt文本中的图像数据读取进行模型的训练,最后保存在runs文件夹下。运行04pyqt界面.py会弹出一个可视化的ui界面,通过点击按钮检测自己感兴趣的图片。运行03detector_photo.py可以实现对单张图片的检测。
2023-06-19 23:38:03 294
原创 024微表情检测系统之疲劳_漫不经心_注意力集中CNN小程序版
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。其中dataset文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。运行02CNN迁移学习训练模型.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。
2023-06-19 23:36:44 52
原创 023微表情检测系统之疲劳_漫不经心_注意力集中CNN视频流版
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行03ui_pyqt5.py展示可视化的界面,交互按钮,可以在pyqt上加载视频进行检测,识别状态:alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。运行01训练数据集文本生成.py会将数据集图片路径保存在txt文本中。
2023-06-19 23:35:03 41
原创 022微表情检测系统之疲劳_漫不经心_注意力集中CNN网页版
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行03web.py展示可视化的界面,交互按钮,可以在网页上加载图片进行检测,识别状态:alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。运行01训练数据集文本生成.py会将数据集图片路径保存在txt文本中。
2023-06-19 23:31:28 120
原创 021微表情检测系统之疲劳_漫不经心_注意力集中CNN图像版
运行03pyqt界面.py展示可视化的界面,交互按钮,可以加载图片进行检测,识别状态:alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。其中dataset文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。运行02CNN迁移学习训练模型.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。运行01训练数据集文本生成.py会将数据集图片路径保存在txt文本中。
2023-06-19 23:28:08 75
原创 020pyqt5实现手写中文数字识别
卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。运行02文字识别程序.py可以生成一个可视化的界面,可以画图识别,也可以加载图片识别。运行01汉字识别模型训练.py可以生成模型保存在weights文件夹下,
2023-06-19 23:27:28 247
原创 深度学习代码源码项目90个分享
083基于深度学习的手势识别小程序版本_含10多种模型包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等。016基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等。
2023-06-19 23:26:42 772
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人