BUGBash
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
27、应用性能分析与加速指南
本文介绍了如何通过性能分析找出应用中的瓶颈,并使用 Numba 对计算密集型任务进行加速。同时,还探讨了如何利用 Docker 构建可复制的虚拟环境以提高应用的可移植性和部署效率。通过对比不同加速方法的效果,展示了 CPU 加速和 GPU 加速在不同场景下的适用性,并提供了详细的实现步骤和优化建议。原创 2025-09-01 09:24:01 · 33 阅读 · 0 评论 -
26、目标检测与跟踪学习指南
本博客详细介绍了目标检测与跟踪的学习指南,重点探讨了卡尔曼滤波器的参数调整、单目标状态建模、边界框与观测值的相互转换、卡尔曼滤波器的实现、检测框与跟踪器的关联方法以及多目标跟踪主类的定义。通过实现Sort算法,结合目标检测网络与跟踪器,完成了对视频中物体的实时跟踪与统计。博客还总结了相关知识体系,并展望了未来在计算机视觉领域的应用与发展。原创 2025-08-31 11:20:52 · 26 阅读 · 0 评论 -
25、目标检测与跟踪学习指南
本文详细介绍了目标检测与跟踪的学习指南,涵盖了单目标检测器、滑动窗口方法、单遍检测器(如SSD和YOLO)、交并比(IoU)的计算、网络训练方法、Sort跟踪算法以及卡尔曼滤波器的应用。同时,还讨论了目标检测与跟踪系统的评估指标、常见应用场景以及未来的发展趋势。通过本博客,读者可以全面了解目标检测与跟踪的核心技术及其实际应用。原创 2025-08-30 13:36:43 · 20 阅读 · 0 评论 -
24、学习物体检测与跟踪
本文详细介绍了如何使用深度学习技术实现一个完整的物体检测与跟踪应用程序。内容涵盖了从环境配置、SSD和YOLO等检测模型的使用,到基于Sort算法和Kalman滤波器的跟踪实现,并提供了完整的代码示例。适用于监控、机器人、医学等多个领域的实际应用开发。原创 2025-08-29 14:18:42 · 17 阅读 · 0 评论 -
23、学习对象分类与定位
本文介绍了使用预训练模型 MobileNetV2 构建对象定位模型的过程,涵盖模型构建、数据处理、训练策略以及推理实践。详细讲解了卷积层的设计、损失函数和优化器的选择,以及反向传播算法的工作原理。通过训练和验证,模型在宠物头部边界框定位任务中表现良好,并展示了其在实际应用中的泛化能力。原创 2025-08-28 16:31:25 · 20 阅读 · 0 评论 -
22、物体分类与定位学习
本博客详细介绍了如何使用TensorFlow和卷积神经网络(CNN)进行物体分类与定位的学习。内容涵盖创建TensorFlow数据集、数据预处理、理解卷积神经网络、迁移学习的应用、分类与定位模型的构建、训练及评估。通过使用预训练的MobileNetV2模型,结合自定义分类和定位层,实现了宠物类型和品种的分类以及物体边界框的定位。博客还展示了如何可视化训练数据,并提供了完整的代码示例和训练流程说明,为构建更复杂的目标检测系统奠定了基础。原创 2025-08-27 16:22:41 · 20 阅读 · 0 评论 -
21、机器学习中的面部表情识别与目标分类定位
本文详细介绍了基于机器学习的面部表情识别与目标分类定位的实现方法。内容涵盖数据预处理、多层感知器(MLP)测试、模型训练与部署、宠物数据集的准备与解析、迁移学习的应用以及推理脚本的编写。通过这些步骤,可以构建一个完整的计算机视觉应用,适用于安防监控、人机交互、智能宠物识别等领域。原创 2025-08-26 12:18:48 · 24 阅读 · 0 评论 -
20、面部表情识别:从PCA到MLP的实现
本文介绍了基于主成分分析(PCA)和多层感知器(MLP)的面部表情识别方法。通过PCA进行特征提取和降维,结合MLP实现情绪分类,详细讲解了数据处理、模型构建和训练流程,并分析了关键技术和其优劣特性。同时探讨了该方法在实际场景中的应用及未来发展方向。原创 2025-08-25 15:56:31 · 24 阅读 · 0 评论 -
19、学习识别面部表情
本文详细介绍了如何使用Python和OpenCV实现一个完整的面部表情识别系统。内容涵盖了面部检测、预处理、数据收集、MLP分类器训练以及实时视频流中的表情识别。通过封装代码到可交互的GUI应用程序,用户可以在训练模式下收集数据,或在演示模式下进行实时情绪识别。此外,还讨论了优化模型性能的方法,如数据增强和超参数调优,并探讨了该技术在教育、市场调研和安防监控等领域的潜在应用。原创 2025-08-24 16:14:02 · 24 阅读 · 0 评论 -
18、交通标志识别与面部情绪识别技术探索
本博客探讨了交通标志识别和面部情绪识别技术,详细介绍了特征提取方法(如HOG和HSV)、使用简单分类器和神经网络的性能差异,以及深度学习在提升识别准确率中的作用。同时,博客还展示了基于OpenCV的面部检测方法(如Haar级联分类器)和面部情绪识别的实现过程,包括数据收集、预处理、模型训练和应用程序整合。最后,博客展望了技术拓展方向,如更复杂的深度学习模型和跨领域应用。原创 2025-08-23 13:18:58 · 22 阅读 · 0 评论 -
17、交通标志识别学习指南
本博客介绍了基于HOG特征提取和支持向量机(SVM)的交通标志识别系统实现方法。内容涵盖特征提取技术、SVM分类原理、多分类策略、模型训练与预测、性能评估指标(如准确率、精确率和召回率)以及优化建议。通过对比不同特征提取方法的性能,帮助读者全面了解并改进交通标志识别系统的效能。原创 2025-08-22 16:33:15 · 27 阅读 · 0 评论 -
16、交通标志识别学习指南
本文是一篇关于交通标志识别的学习指南,详细介绍了GTSRB数据集的结构与解析方法,并探讨了多种特征提取技术,包括灰度特征、RGB与HSV颜色空间转换、SURF描述符和HOG描述符的应用。文章还涵盖了数据预处理、模型训练与评估等内容,以支持向量机(SVM)为例展示了分类模型的实现过程。通过对不同特征的比较与超参数调整,帮助读者构建高效的交通标志识别系统。原创 2025-08-21 10:16:07 · 19 阅读 · 0 评论 -
15、视觉目标跟踪与交通标志识别:OpenCV 技术实践
本文介绍了使用OpenCV进行视觉显著目标跟踪和交通标志识别的技术实践。针对目标跟踪,讨论了均值漂移算法的局限性,并详细讲解了OpenCV跟踪API以及多目标跟踪的应用方法。在交通标志识别部分,介绍了GTSRB数据集、特征提取技术、支持向量机(SVM)分类器的训练与性能评估,同时探讨了神经网络在提升分类准确率中的作用。通过这些方法,可以实现高效的目标跟踪和高精度的交通标志识别。原创 2025-08-20 10:10:30 · 26 阅读 · 0 评论 -
14、视觉显著对象跟踪
本文介绍了如何通过自然场景统计分析、生成显著性图、检测原型对象以及使用均值漂移跟踪算法来实现视觉显著对象的跟踪。涵盖了图像处理、显著性图生成、原型对象检测方法以及多目标跟踪技术,并提供了完整的Python代码实现与详细解析。适用于视频监控、目标检测等计算机视觉任务。原创 2025-08-19 15:24:01 · 17 阅读 · 0 评论 -
13、OpenCV在计算摄影与目标跟踪中的应用
本文探讨了OpenCV在计算摄影与目标跟踪中的应用,重点介绍了全景拼接优化和视觉显著对象跟踪的实现方法。通过使用OpenCV的Stitcher类,可以快速完成全景拼接,并通过调整参数优化效果。在目标跟踪部分,结合视觉显著性图和傅里叶分析,构建了能够自动检测和跟踪视频中多个显著对象的应用程序。文章还详细讲解了傅里叶变换的原理及其在图像处理中的应用,并展望了这些技术在实际场景中的广泛前景。原创 2025-08-18 14:44:49 · 19 阅读 · 0 评论 -
12、利用OpenCV进行计算摄影
本文介绍了如何使用OpenCV进行计算摄影,包括高动态范围(HDR)图像生成和全景图拼接。通过调整相机的曝光参数,拍摄多张不同曝光的照片,然后使用Debevec算法将这些照片合并成一张HDR图像,并使用特征提取和匹配技术将多张照片拼接成一幅全景图。文章还探讨了优化思路,并展示了实际应用效果。原创 2025-08-17 11:28:47 · 19 阅读 · 0 评论 -
11、计算机视觉中的3D场景重建与计算摄影技术
本博客深入探讨了计算机视觉中的3D场景重建与计算摄影技术。重点介绍了从运动中恢复结构(Structure from Motion)的基本原理与实现步骤,包括相机校准、三角测量和点云可视化。同时,详细讲解了使用OpenCV进行计算摄影的关键技术,如伽马校正、高动态范围成像(HDR)和全景拼接的实现方法与应用场景。博客还提供了完整的Python代码示例,并展望了这些技术在未来的发展与广泛应用前景,如虚拟现实、增强现实及工业检测等领域。原创 2025-08-16 10:08:56 · 33 阅读 · 0 评论 -
10、基于运动恢复结构的3D场景重建
本文详细介绍了基于运动恢复结构的3D场景重建技术,涵盖了从图像特征匹配、相机矩阵计算、图像校正到3D点云重建与可视化的完整流程。通过SIFT和光流两种特征匹配方法,结合对极几何原理计算基础矩阵与本质矩阵,并利用奇异值分解获取相机的旋转和平移参数。随后通过图像校正优化视角,使用三角测量方法重建3D空间点,并最终实现点云可视化。文章还分析了各关键技术点的优劣、适用场景及优化方向,展示了该技术在虚拟现实、机器人导航和文物保护等领域的广泛应用前景。原创 2025-08-15 15:26:35 · 32 阅读 · 0 评论 -
9、基于运动恢复结构的3D场景重建
本文介绍了基于运动恢复结构的3D场景重建技术,详细阐述了相机校准、针孔相机模型、特征提取与匹配、基础矩阵与本质矩阵的计算、相机运动估计、三角测量重建场景以及点云可视化等关键步骤。通过OpenCV和Python实现了相关算法,并利用开源数据集进行了验证。该技术在虚拟现实、增强现实和机器人导航等领域具有广泛应用前景。原创 2025-08-14 15:13:45 · 22 阅读 · 0 评论 -
8、特征匹配、透视变换与3D场景重建技术解析
本文详细解析了图像特征匹配与透视变换技术,并介绍了如何利用这些技术实现3D场景重建。内容涵盖图像变形、特征跟踪、早期异常值检测与剔除等关键技术,并通过OpenCV实现从2D图像到3D点云的可视化。适用于计算机视觉领域的开发者和研究人员参考学习。原创 2025-08-13 09:39:05 · 17 阅读 · 0 评论 -
7、通过特征匹配和透视变换查找对象
本文详细介绍了如何通过特征匹配和透视变换在图像中查找和突出显示感兴趣的对象。内容涵盖特征提取、特征检测、描述符生成、特征匹配、异常匹配去除以及单应性估计映射等关键步骤。文章还对比了多种特征检测算法的优劣,并结合实际案例展示了该技术的广泛应用,如目标检测、图像拼接和增强现实。最后,还提供了一些代码优化建议,帮助开发者更好地实现相关算法。原创 2025-08-12 11:31:26 · 30 阅读 · 0 评论 -
6、基于计算机视觉的手势识别与目标检测技术
本文探讨了计算机视觉中的两种关键技术:基于凸性缺陷的手势识别和基于特征匹配与透视变换的目标检测。手势识别通过计算手指角度判断手势,适用于智能家居和虚拟现实等人机交互场景;目标检测利用SURF和FLANN实现对任意姿态目标的检测与跟踪,适用于视频监控、自动驾驶和游戏等领域。文章还详细介绍了相关算法实现流程及应用对比。原创 2025-08-11 16:09:42 · 23 阅读 · 0 评论 -
5、Hand Gesture Recognition Using a Kinect Depth Sensor
本博文介绍了如何使用Kinect深度传感器实现手部手势识别。通过深度图像分析,从手部区域分割、轮廓检测、凸缺陷识别到最终的手势分类,详细描述了整个实时手势识别流程。文章提供了基于OpenCV和NumPy实现的核心代码片段,并总结了手部形状分析的关键技术,如轮廓检测、凸包检测和凸缺陷分析。最后,博文还提供了一个完整的代码框架,用于构建手势识别系统,适用于人机交互、游戏和辅助技术等多个领域。原创 2025-08-10 12:47:29 · 17 阅读 · 0 评论 -
4、图像滤镜与手势识别应用开发
本文介绍了图像滤镜和手势识别应用的开发过程。图像滤镜部分利用 wxPython 构建图形界面,通过定时器和位图缓冲处理视频帧,并支持多种滤镜效果,如暖色调、冷色调、铅笔素描和卡通化效果。手势识别部分基于深度传感器(如 Microsoft Kinect 或 ASUS Xtion)进行手部区域分割、形状分析和手势识别,通过深度图像的阈值处理、形态学操作、轮廓检测和凸缺陷分析,实现简单手势的实时检测。应用结合了图像处理与交互设计,适用于游戏、教育和医疗等领域。原创 2025-08-09 15:46:41 · 28 阅读 · 0 评论 -
2、图像滤镜处理实战
本文详细介绍了如何使用OpenCV和Python实现多种图像滤镜效果,包括黑白铅笔素描、暖色调和冷色调滤镜以及卡通化效果。通过减淡、加深、高斯模糊、曲线滤镜、查找表、双边滤波、中值滤波和自适应阈值处理等技术,将图像处理技术应用于实时视频流。同时,还使用wxPython创建了一个图形用户界面,让用户可以方便地选择和应用不同的滤镜。原创 2025-08-07 13:36:55 · 28 阅读 · 0 评论 -
1、计算机视觉项目实战:OpenCV 4 与 Python 3 的创意应用
本博客基于OpenCV 4和Python 3,深入讲解多个中级到高级的计算机视觉项目实战,涵盖图像滤波、手势识别、物体检测与跟踪、3D场景重建、计算摄影等热门领域,旨在帮助读者通过实践掌握计算机视觉核心技术,并提升实际应用能力。原创 2025-08-06 16:48:18 · 27 阅读 · 0 评论