2016 香港网络赛 A题. A+B Problem (FFT)

题目地址
给你一堆数,问你满足 ai+aj=ak (i,j,k) 三元组的数量。
因为有负数,所以给每个数右移50000
然后几乎是一个裸的FFT,就这么提交,然后WA了。

之后想到了忘记判不符合的情况了,只有一个地方要考虑一下。就是 ai=0j==kaj=0i=k 容易想到这个次数就是0的个数 tot02 ,当 ak=0 时 是 (tot01)2

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>

using namespace std;
typedef long long LL;
const int MAXN = 262144*2+1000;
const int INF = 0x3f3f3f3f;
const double pi = acos(-1.0);

struct cp
{
    double x,y;
    cp() {}
    cp(double x,double y):x(x),y(y) {}
    inline double real() { return x; }
    inline cp operator * (const cp& r) const { return cp(x*r.x - y*r.y,x*r.y+y*r.x); }
    inline cp operator - (const cp& r) const { return cp(x-r.x,y-r.y); }
    inline cp operator + (const cp& r) const { return cp(x+r.x,y+r.y); }
};

cp a[MAXN],b[MAXN];
LL r[MAXN],res[MAXN],ax[MAXN],bx[MAXN];

void fft_init(int nm,int k)
{
    for (int i=0;i<nm;i++) r[i] = (r[i>>1]>>1) | ((i &1) << (k-1));
}

void fft(cp ax[],int nm,int op)
{
    for (int i=0;i<nm;i++) if (i<r[i]) swap(ax[i],ax[r[i]]);
    for (int h=2,m=1;h<=nm;h<<=1,m<<=1)
    {
        cp wn = cp(cos(op*2*pi/h),sin(op*2*pi/h));
        for (int i=0;i<nm;i+=h)
        {
            cp w(1,0);
            for (int j=i;j<i+m;++j,w=w*wn)
            {
                cp t=w*ax[j+m];
                ax[j+m] = ax[j]-t;
                ax[j] = ax[j]+t;
            }
        }
    }
    if (op == -1) for (int i=0;i<nm;i++) ax[i].x /=nm;
}

void trans(LL ax[],LL bx[],int n,int m)
{
    int nm=1,k=0;
    while (nm < 2*n || nm < 2*m ) nm<<=1,++k;

    for (int i=0;i<n;i++) a[i] = cp(ax[i],0);
    for (int i=0;i<m;i++) b[i] = cp(bx[i],0);
    for (int i=n;i<nm;i++) a[i] = cp(0,0);
    for (int i=m;i<nm;i++) b[i] = cp(0,0);

    fft_init(nm,k);
    fft(a,nm,1);fft(b,nm,1);
    for (int i=0;i<nm;i++) a[i] = a[i]*b[i];
    fft(a,nm,-1);
    nm = n+m-1;
    for (int i=0;i<nm;i++) res[i] = (LL)(a[i].real()+0.5);
}
int n;
LL l[MAXN];
int main()
{
    LL anum = 0,tot0=0;
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
    {
        scanf("%lld",&l[i]);
        if (l[i] == 0) tot0++;
        l[i] += 50000;
        ax[l[i]] ++;
        anum = max(anum,l[i]);
    }
    trans(ax,ax,anum+1,anum+1);
    for (int i=1;i<=n;i++) res[l[i]*2] --;
    LL ans=0;
    for (int i=1;i<=n;i++)
    {
        ans += res[l[i]+50000];
        if (l[i] == 50000) ans -= (tot0-1)*2;
        else ans -= tot0*2;
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值