【高斯消元解XOR方程组】各种题

MT神牛的ppt很酷

QW又无节操的蒯了道经典高斯消元的题(Orz)

于是准备给自己普及普及这方面知识

只要以后有这方面题就会写了贴上来


我认为比较重要或是难理解的东西有以下几个

1.关键元概念, 关键元决定了能够去XOR哪个方程

2.自由元与解的数目的关系,若少一个自由元,则解的数目减半(乘法原理)

3.压位存方程(有几种都很优美的实现方式, 方程右边的值为 原始状态 XOR 目标状态)

4.消元

5.回代求解


离线算法 时间复杂度(N2M)


1. poj 1830 开关问题

http://poj.org/problem?id=1830

题意:

给出开关的初始状态与末状态

给出开关之间有相互影响的二元组

求有多少种可以从初始状态转到末状态的方法

用离线算法水过,且此题没有回代求解的需求

code

#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
using namespace std;

const int maxn = 29 + 5;

int K, n;
int a[maxn], b[maxn];

void Swap(int &a, int &b) { int T = a; a = b; b = T; }

int main()
{
   freopen("poj1830.in", "r", stdin);
   freopen("poj1830.out", "w", stdout);

   for (scanf("%d", &K); K; --K)
   {
      scanf("%d", &n);
      for (int i = 1; i <= n; ++i)
         scanf("%d", &a[i]);
      for (int i = 1, j; i <= n; ++i)
         scanf("%d", &j), a[i] = a[i] ^ j;//右数第一位存的是方程右边
      for (int i = 1; i <= n; a[i] |= (1 << i), ++i);
         //在方程中与自己建立关系
      for (int u, v; scanf("%d%d", &u, &v) && u + v != 0; a[v] |= (1 << u));
         //即v的变换与u有关
      
      int k = 1, tot = 0;
      for (int i = 1; i <= n; ++i)
      {
         for (int j = k; j <= n; ++j)
            if (a[j] >> i & 1) { Swap(a[j], a[k]); break; }

         if (!(a[k] >> i & 1)) ++tot;//没有以第i个元为关键元则多一自由元
         else
         {
            for (int j = k + 1; j <= n; ++j)
               if (a[j] >> i & 1) a[j] ^= a[k];
            ++k;
         }
      }

      for (int i = k; i <= n; ++i)//判方程有无解的情况
         if (a[i] & 1) { tot = -1; break; }

      if (tot == -1) puts("Oh,it's impossible~!!");
      else printf("%d\n", 1 << tot);
   }

   return 0;
}



Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包含$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包含$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值